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A Study of the Time-Dependent

Wind-Driven Ocean Circulation1

by

G. Veronis 2 and G. W. Morgan 3

Abstract. This investigation is concerned with the

large-scale wind-driven motions of the ocean and their responses

to a time variation in the wind, Starting from the equations

of motion for an inhomogeneous fluidl a detailed formulation of

the problem is presented, including the listing and discussion

of the assumptions and simplifications necessary to reduce the

general mathematical model to one which may be successfully

attacked analytically.

Since the real ocean is barocliniQ, the problem is

formulated to include a non-uniform density distribution. Two

special cases are considered.

(i) An ocean consisting of two superposed layers of con-

stant density is assumed and the equations are integrated over

each layer to simplify the analysis, Attempts at an analytical

solution for this case were unsuccessful,

1 The results presented in this paper were obtained in the

Scourse of research conducted under Contract N7onr-35801.,

f 2 Research Assistant Graduate Division of Applied Mathematics,

Brown University, Providence, R. I.

3 Associate Professor of Applied Mathematics, Brown University,
Providence, R. I.
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(ii) A more general density distribution is then assumedt

but a more restrictive assumption is made concerning the verti-

cal variation of velocity. In particular, it is assumed that

there exists a (variable) depth below which the velocities are

negligible, As a result of this assumption, a direct relation

is found between the thermocline and the free surface. The

equations are integrated from this depth up to the free surfacev

The linearized equations are then subjected to an analytical

treatment consisting of a perturbation expansion in terms of a

parameter which is proportional to the frequency of the wind

variation, The resulting equations are solved by boundary

layer technique.

Results are derived for the response of the mass trans-

port to slowly varying winds, and the effect of the wind on the

intensified stream near the western boundary is discussed in

detail*

The two-layer steady problem is also solved and the

steady position of the thermocline is determined.
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1. Introduction. Much of the investigation, both theo-

retical and observational in the field of oceanography has center-

ed around the dynamics of ocean currents - including the mass

transport of the Gulf Stream and the Kuroshio Current, and the

general oceanic circulation. Recently interest has developed

regarding the response of the thermocline (the region of sharp

vertical gradient of density) to a time-varying wind.

Since the time of Ekman's first paper [11*, a large

number of papers have appeared in some o.f the geophysical jour-

nals dealing with various aspects of ocean currentso However,

analytical investigacions of the problem of general oceanic

circulation have met with success only in recent years. In the

past decade various interesting and meaningful mathematical

models have been suggested by numerous investigators, Sverdrup

[2] and Reid [3] proposed a fairly simple model which seems to

give very good qualitative results for a region with only one

north-south boundary. Stommel [4] considered two linearized

models with a simplified viscous term. His very important con-

tribution to the overall problem is based on the difference

between the results obtained with the two models. In one casel

the Coriolis term was constant and the resulting streamline

pattern is identical with the one in a model with no rotation.

In the second case, the Coriolis term varied linearly with

latitude and westward intensification resulted - a factor which

Numbers in square brackets refer to the bibliography at theend of the paperq
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was not present in the previous case. Since Stommel's paper

all problems dealing with general circulation contain a varying

Coriolis parameter. Munk [5] refined all the previous work and

included the general viscous terms in the equations of motion,

He solved the problem of a steady wind blowing over an enclosed

ocean, taking account of many of the salient features which are

present in the real ocean. Munkts work was extended by Munk

and Carrier [6] to include oceans of various geometrical shapes,

viz. I triangular and semi-circular. It was further extended

by MunktGroves, and Carrier [7] to include the non-linear terms

by means of a perturbation procedure.

Along with the American publications, a number of papers

have appeared in Japan. Notable among the Japanese authors is

Hidaka, who published a series of articles covering many of the

interesting phenomena of oceanographic problems. Among his con-

tributions are a series of three papers on drift currents in an

enclosed ocean [12] [13] [14], and a contribution concerning

the neglect of the non-linear terms in the solution of problems

in dynamic oceanography [I5],

Practically all of the work done so far in ocean current

problems has been confined to motions which are independent of

time. Each publication has treated some aspect of the general

problem of oceanic circulation, This problem essentially con-

sists of finding the dynamic pattern which results from a given

distribution of winds acting on the ocean surface.

The complete problem contains a large number of features,

such as large-scale oceanic circulation, surface wavesjupwelling,
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etc. To find all such motions one would have to take into ac-

count the effects of the wind, density and temperature distribu-

tion, the topography of the ocean bed and possibly even such

features as salinity. Needless to say, a mathematical analysis

including all these features is impossible. It is therefore

necessary to decide what particular aspects of the problem one

wishes to study. In this paper we shall confine our attention

to large-scale wind-driven motions in the oceans and their re-

sponses to a prescribed time variation in the wind, In the

Atlantic Ocean, such large-scale motions must include the Gulf

Stream and its counter-currents, the Sargasso Sea, etc#

The time-dependent problem has also been considered by

Ichiye [16]. We shall discuss his work later in the report.

It has been generally agreed upon by oceanographers

that the type of phenomena we wish to consider can be adequately
described by the dynamics of the problem alone, the temperature

effects being included by way of an assumed semi-empirical den-

sity distribution. At the Woods Hole Ocearngraphic Institute,

experiments with a model parabolic ocean basin verify the above

conjecture. Hence, in the subsequent analysis, we shall neglect

direct temperature dependency in the treatment of the problem

and shall include only the effects of wind and gravitation.

A large part of our report is concerned with the formu-

lation of the problem and the assumptions made to reduce the

general problem to one which can be attacked mathematically. In

the past a discussion of such assumptions has often been vague.

It was felt therefore that an explicit and detailed analysis of

-- -- --
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the simplifications involved in the formulation of the problem

might be welcomed by workers in this field and that it might

help to clear up any existing misconceptions concerning the

validity of some of the assumptions.

2. Disc~ussion of Results. At this point we shall discuss,

without resorting to mathematical detaill the basic assumptions,

the results, and the conclusions of the present investigation.

In this manner we hope to convey a more integrated picture of

the physics of the problem,

Mathematically, the motion which we want to study can

be defined by the Navier-Stokes equations of motion with the

viscous terms replaced by terms arising from a macroscopic vis-

cosity, viz.j an eddy viscosity. The complete non-linear equa-

tions are too difficult to solvehoweverso that we are forced

to make a number of simplifying assumptions which we shall list

below#

L. The fluid is assumed to be incompressible, but it may

be inhomogeneouso

2. The equations on a rotating sphere are approximated by

equations in a rectangular Cartesian system. The effect of the

sphericity of the earth is retained by allowing the Coriolis

parameter to depend on the latitude, Since we shall consider a

rectangular ocean in the Cartesian system, a few remarks must

be made concerning the region of the sphere onto which the rec-

tangle is mapped, The constant east-west distance of the rec-

tangle is preserved in the mapping of the rectangle onto the
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sphere. Such a mapping is not conformal since angles between

lines are not preserved* The region under consideration must

be well removed from the north pole.

3. The vertical acceleration terms and the viscous terms

are neglected in the equation of vertical motion so that, in

effect, hydrostatic pressure is assumed, i.e.a p g:- pdz, where

is the free surface height and p = 0 at z = •. The density

p may, of course, be a function of the space coordinates4 In

Appendix 3 it is shown that for the problem which is independ-

ent of time, the hydrostatic pressure assumption is necessary

only in the depths where there is no motion if one desires a

solution for the components of the mass transport only. If it

is necessary to find the shape of the free surface, however, or

if the non-steady problem is consideredl this assumption or some

analogous one must be made,

4. As stated in the introduction, the thermodynamic effects

are accounted for only empirically by stipulating a density dis-

tribution. We assume p = p[z - T(x,yt)] where the function p

of the variable (z - T) can be prescribed to fit observational

data. This functional form for p makes the curves of constant

density parallel.

5# The equations of motion are integrated over the verti-

cal coordinate, z.

In order to perform this integration it is necessary

that we specify the density distribution since p appears in

some of the integrands. We consider two cases,

(i) The surface z = T separates two layers of constant
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density. The equations of motion in each layer are then inte-

grated over the depths of the respective layers and the non-

linear terms are neglected. We also neglect shear forces at

the bottom of the lower layer and at the interface* No assump-

tion is made concerning the vertical distribution of velocity ,

but instead, we hope to solve for the integrated velocities

(i.e., the transports) in each layer, This case is referred to

as the two-layer problem. Unfortunately, it is much too diffi-

cult to handle analytically, and consequently we must consider

a second problem.

(ii) The marner of performing the integration in this case

will lead to a considerably simplified problem which allows us

to stipulate a more general density distribution than that in

Wi). The density is specified as a continuous function of depth

and the ocean is divided into three layers. A layer of constant

density, po, lies above the surface z = T(xy,t). From z = T

down to z = T - d (d is constant) the density increases linearly

with depth from p0 to the value P-h" Below z = T - d, the den-

sity has the constant valuer P-h&

We assume that there is a depth z = - h(xyt) below

which the velocities may be considered negligible (in some

suitably defined sense). The pressure gradients will then also

be negligible below z = - h. As a consequence of this assumption

and the previous assumption of hydrostatic pressure, a relation-

ship exists between the surface z = T and the free surface

Compare this with case (ii T.
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z = I I viz., T = - po/Ap I - C (where Ap= h " p0 and T = -C

when • = 0). Thus, if the velqcities are negligible in the

depths of the ocean, the thermocline must respond immediately

to a change in the shape of the free surface in order to main-

tain negligible pressure gradients at these depths.

The three assumptions, (a) hydrostatic pressure)

(b) negligible velocities in the ocean depths, and (c) con-

stant density below the thermocline, are crucial for the present

case. It is, of coursef possible that any one or a combination

of these three assumptions may be incorrect. If this be the

case, then the thermocline need not respond to the free surface

immediately. The frequency of the wind variation which we shall

consider later in our development will be small so that assump-

tions (a) and (b) seem plausible,. Thus the only motion exist-

ing below the thermocline is caused by vertical shear and this

motion decays exponentially with increasing depth according to

Ekman [1].

The equations of motion are then integrated from the

depth z = - h to the free surface z = I* This problem will be

called the one-layer problem because of the single integration.

The depth, z = - h, does not appear explicitly in the integrated

equations.

In both cases, the effect of the wind is represented

by the shear stress at the ocean surface and appears in the

evaluation of the vertical viscous terms at the upper limit of

integration (free surface).

An additional difference between the two problems is
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that the two-layer problem specifically restricts the fluid of

the top layer to remain in the top layer and the fluid in the

lower layer to remain in the lower layer. The one-layer prob-

lem has no such restriction and an interchange of fluid may

result. However, because of the integration we have no inform-

ation concerning this vertical motion.

6. The non-linear terms in the equations of horizontal

motion are neglected. A plausibility argument for this assump-

tionbased on the results of [7], is presented in Appendix 2.

However, our results must now be considered tentative, since

the case presented in the appendix for the neglect of the non-

linear terms is a plausibility argument and not a justification.

The primary motive for neglecting the non-linear terms is our

inability to cope with them analytically.

7. The Coriolis parameter is linearized. In effect)

this is comparable to linearizing the sine of an angle when the

angle varies between 150 and 600.

With the above assumptions and simplifications we are

in a position to attempt a solution of the non-steady problem.

The ocean is chosen to be rectangular with vertical walls as

boundaries on the east and west. Because of the presence of

viscosity, the boundary conditions on these walls are that the

velocities vanish. The boundaries on the north and south are

water boundaries.

The wind-stress is written as

•x - (W' +r'sinwt)cos ny
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where W',rP ', • and n are constants and Tx (Fig. 1) is the

east-west component of the stress. The above form for the wind-

stress may be considered as the general term of a Fourier series

expansion so that the wind-stress may be generalized for the

linear problem. However, for our numerical example, we have

chosen w to give a period of one year and n as 2n/S where s is

the north-south length of the ocean (0 ý y < s). The wind-

stress component ry is assumed identically zero. Since the wind-

stress is prescribed in such a manner that its y derivative

vanishes at y = Os, it appears reasonable to demand that these

boundaries be streamlines and that the normal derivatives of

the velocities vanish there.

The one-layer problem is solved by the following proce-

dure. The equations are non-dimensionalized. The non-dimen-

sional velocities and free surface height are expanded in per-

turbation series with the non-dimensional time parameter as the

perturbation parameter. Each resulting set of equations is

then solved by application df the boundary layer technique,

The conditions for the validity of the expansion restrict

the time variation to a maximum frequency of seasonal oscilla-

tion. In the numerical example, yearly frequency is assumed

and the perturbation terms of second-order and higher are

neglected. The error involved in neglecting the second-order

term as compared to the zero-order term is about 5%, and it is

about 20% as compared to the first-order term. The remaining

physical parameters are given values which correspond roughly to

those of the North Atlantic Ocean.
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The following discussion will be based on the non-

dimensional quantities defined in the body of the report. When-

ever dimensional quantities are mentioned, we shall include the

dimensions*

The graph of the north-south component, V, of the mass

transport vs, the east-west coordinate x1 near xt = 0, the

western shore, is shown in Fig. 2 for the value yt = 0.25, i.e.,

where the Gulf Stream is most pronounced. The Gulf Stream re-
gion is the region of large positive Vo The region of negative

V adjacent to the Gulf Stream corresponds to the offshore

counter-current,

The Gulf Stream responds to the wind in such a manner

that the mass transport and the wind are in phase whenever the

latter takes on its maximum or minimum value. At all other

times the mass tramsport lags behind the wind with the greatest

lag occurring when the wind reaches its steady position** At

this time the mass transport is about 9 days away from its

steady value * The length of this inVerval, iLeo) nine day~s,

is independent of the frequency for slowly varying winds.

The wind (see Fig. 1) and the mass transport attain

their maximum values at T = n/2. The mass transport now has a

magnitude of (1 + Pt/W,) times its steady value. Thus, within

the accuracy of the present method of solution, the time at

which maximum transport occurs and the magnitude of the maximum

* We shall refer to the "steady position" whenever the time-
dependent contribution of the wind is zero*

** ie. , the value due to its response to a steady wind
= - W cos ny.
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transport are independent of the frequency. The magnitude of

the out-of-phase effect (the second term in the perturbation

series) which is largest when the wind has its steady valuef

is proportional to the frequency.

The time variation of the wind affects the Gulf Stream

only by changing the mass transport through the Stream. It

does not change the Stream's position.

As can be seen from Fig. 2, the relative importance of

the out-of-phase effect is greatest in the counter-current.

Figure 3 is a graph of the north-south mass transport

component near the eastern boundary of the rectangular ocean

at the latitude yf = 0.25. The accompanying out-of-phase effect

is shown at its maximum in the figure. V is negative on the

eastern coast, ie., the mass transport is toward the south*

Figures 4, 5, and 6 show the contour lines of the free

surface in the southern half of the ocean for various times.

With the values of the contour lines multiplied by -200 the

three figures represent the contour lines of the thermocline.

Qualitatively, the results agree fairly well with observation

though some of the natural features are missing. It seems

likely, however, that most missing features result from local

effects which we have not taken into account.

Because of the lengthy computations involved, we have

calculated numerical results for only one set of values of the

parameters. It can be seen from the analytical results that if

the average depth of the top layer be changed, the values for

the deflection of the free surface and the out-of-phase



All-101 14

velocities will change, Specifically, if the depth is decreased,

the free surface deflection is increased and all out-of-phase

quantities are increased,

The above results appear to invalidate the solution of

the problem as obtained by Ichiye [16]* Ichiye neglected the

contribution of the non-steady term in the integrated continuity

equation. However, with the values of the parameters used in

Section 4, the magnitude of this term in the interior of the

ocean is as much as ten times that of the remaining non-steady

terms which were retained in Ichiye's analysise

We have computed the mass transport through the Gulf

Stream for the one-layer steady problem. With the given wind

distribution our result is 26.6 x 106 metric tons per second.

This value is about three-fourths of Munk's value [5] and about

one-third of the observed value, Munk used an empirical east-

west wind distribution.

The two-layer steady problem is solved in Section

where it is shown that the mass transport streamline pattern is

the same as in the one-layer problem. This is to be expected

since, for the steady case, the same assumptions are made regard-

ing negligible velocities below the thermocline. Thus, the

height of the thermocline is shown to be proportional** to the

free surface deflection. Since the free surface height is deter-

mined largely by the thickness of the top layer, the thermocline

* In [16] the term corresponding to WI in the present paper
was assumed to be identically zero. i.e., the wind had a
zero mean value.

** The factor of proportionality is the reciprocal of the
density difference.
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variation depends on the choice of the two parameters, density

difference and thickness of top layer.

By varying the two parameters we can get good qualita-

tive agreement with observations of the shape of the thermocline.

In Fig. 9, a cross-section of the computed thermocline is shown

for four pairs of values of the parameters. Because of the

rather vague definition of the actual thermocline, we cannot

state specifically the extent of quantitative agreement between

our computed results and the observed values. Consider,

however, the curve in Fig. 9 with a depth of the top layer of

200 meters and a density difference of 0.0025. For that curve

the results disagree by a factor of three when compared to some

of the measurements of the thermocline off Chesapeake Bay [10].

The two-layer non-steady problem constitutes an attempt

to drop the assumption made in the one-layer problem that the

velocities vanish at some great depth. As a consequence the

problem becomes much more complicated and it is necessary to

introduce some other simplifying assumptions, viz. , to neglect

the shear forces at the bottom and at the thermocline. This

may have far-reaching effects. These simplifications notwith-

standing, we were unable to obtain a solution. A brief descrip-

tion of our attempts at such a solution follows.

First, the equations are non-dimensionalized as in the

one-layer case. The integrated continuity equation for the top

layer now contains the time derivative of the magnitude of the

deviation of the thermocline from its equilibrium position.

Since this term is very large, the perturbation method used in
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the one-layer problem is restricted to a range of frequency

values corresponding to less than one oscillation every hundred

years. Since these results are not physically interesting no

numerical results were computed.

A second method of attack is then attempted. The wind-

stress term is first divided into its steady and non-steady parts

and the two problems are treated separately without resorting

to a perturbation in the time parameter. This method had been

attempted for the one-layer problem with no success. In the

present case, however, it was hoped that the new parameter in-

volving the density difference could be used to advantage. Un-

fortunately, an analytic solution still appears to be quite

hopeless.

The one interesting fact which seems to emerge from the

attempts at the solution of our idealized, two-layer, non-steady

problem concerns the magnitude of the lower layer transport. We

must recall that, in the case treated, the solution is restricted

to the frequency range for which the thermocline responds to the

variation of the top surface in a quasi-steady manner; i.e.e as

a result of any change in the free surface, the thermocline

assumes the same shape as it would for a steady problem with the

given free surface, except for a small out-of-phase correction.
In this case, the mass transport in the lower layer, excluding

whatever transport may be caused by shear at the interface, is

of the same order of magnitude as that portion of the transport

in the upper layer which is out of phase with the wind, For a

higher frequency this result does not necessarily hold true.
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A final word should be said about the lack of quantita-

tive agreement between our computed results and observation.

The factor of three is not surprising when one considers the

very idealized model which we have assumed. A number of more

realistic assumptions may certainly affect our quantitative

results by such a factor. The inclusion of the non-linear terms,

a better representation of the wind effects on the water, a

more natural topography, and a non-constant eddy viscosity may

well alter the quantitative results and bring them into closer

agreement with reality.

3. Formulation of the Problem. It is our aim to derive

expressions for the velocity and the pressure satisfying the

three equations of motion on a rotating sphere

=- + q e vq + 2qxq + Qx(Qxr) = Vp + F + -1(V AiV)q
8t -.. . p - p-

the continuity equation

V q =0

and the boundary condition that q = 0 on a land-water boundary.

Here, *q = (u,v,w) denotes the velocity vector relative to a
coordinate system rotating with the sphere,

•_ denotes the angular velocity vector representing the

earth's rotation,

p denotes the pressure,

p denotes the density,

F denotes the external forces per unit mass (in our case,
gravitation),

* u,vw are spherical components of velocity along the direc-
tions of the radius the meridians, and the parallels of
latitude respectivejyo
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(V I AiV)q represents the eddy viscosity term (discussed

below).

Let us consider the expression for the eddy viscosity

term in a rectangular coordinate system, this being the system

in which we shall later write our equations.

We define the operator (V e AiV) as follows:

(V" Ai'7) . (A ) + -(A, ) + (A

where Al, A2 ) A3, may depend on the space coordinates. These

three quantities (the coefficients of the lateral and vertical

eddy viscosity) have been measured and are known to vary through-

out the oceans. The definition of the viscous coefficients and

our knowledge of their magnitudes, however, are rather vague*

In view of this, and because of subsequent analytical simplifi-

cations, we assume that the lateral kinematic eddy viscosity

coefficients are constant and equal, so that

a2  62
1 (V -Ai ~A( +---) + -(As,)
P axA2  ay 2  P az az

where A is now a kinematic eddy viscosity and is constant. No

simplification will be made concerning A3#

Our continuity equation is valid for an incompressible

fluid# In the steady problem the density may be more general

and we have simply V " (pq) = 0. In the non-steady problem, the

assumption of incompressibility is imposed but the fluid may be

homogeneous.

We shall want to make use of [7] regarding the effect

of the non-linear terms. Because the results in [7] are discussed

in terms of rectangular coordinates and because the use of
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rectangular coordinates considerably simplifies the analysis,

we shall first transform the equations of motion from spherical

to rectangular coordinates in such a manner that the equilibrium

free surface which establishes itself in the spherical system

as a result of gravity and centripetal acceleration corresponds

to the x-y plane of the rectangular system. The apparent gravi-

tational force, i.e. , the force which is the resultant of true

gravity and centripetal acceleration, acts in a direction normal

to this equilibrium surface.

In Appendix 1, it is shown that our original equations

reduce to

au, + vi buu _ s
at 8x by R ax i

&v I+ ut 8v' + vt av' + 2Qu' sin(Z) = - .1 Ly(V. AiV)v, (2)
at 8x by R Pay

1 q -•P = g (3)
p az

AU'1 + ayvl + aw' = 0 •
ax by az

where

x,u' denote the east-west coordinate and velocity
respectively (x is positive eastward),

yv t denote the north-south coordinate and velocity
respectively (y is positive northward),

z,w' denote the vertical coordinate and velocity

respectively (z is positive upward),

R is the mean radius of the earth,

g is the apparent gravitational acceleration on
the earth's surface,

2pin(y) is the radial component of the angular velocity
R vector of the earth.
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The rectangular coordinate system is oriented with the

origin in the southwest corner of the ocean and with the equili-

brium surface in the x-y plane.

A number of assumptions were made in thle reduction of

the four equations valid on a spherical earth to the four equa-

tions given above. These assumptions are listed here for the

convenience of the reader who does not wish to go through the

detail in Appendix 1.

(1) In the radial component of the equations of motiont

the acceleration terms and the viscous terms are

neglected in comparison to g, the gravitational accel-

eration. In essence, we assume hydrostatic pressure ,

(2) All terms involving radial velocity are neglected in

the remaining two equations of motion on the supposi-

tion that the radial velocity is very small compared

to the lateral velocities.

(3) The variation of the radial distance, r, over the

depth of the ocean is neglected and we write r ; R9

the mean radius of the earth.

(Actually, tho radial distanco varios by about 1/1000

of its total length.)

(4) Terms which are divided by R are negleoted in compar-

ison with all other terms.

(5) The region considered must not lie close to the north

pole since some terms which have been neglected

*in Appendix 3, this assumption is discussed in more detail.
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previously become infinite at the pole. In our prob-

lem the ocean is confined to a region lying southof

latitude 70°,

(6) An appropriate interpretation of the results as applied

to the spherical ea.-itb must be made, keeping in mind

that the boundaries have been distorted. If we con-

sider a rectangular ocean in the plane, the appropri-

ate mapping onto the sphere would preserve the con-

stant east-west length. Such a mapping is not conform-

al since angles are not preserved. (In the case of a

Mercator projgction, on the other hand, angles are

preserved, but the east-west distance is distorted.)

Let us consider the simplified equation of vertical

motion (3). In integral;ed form, this equation is

p = g pdz (3.a)

where q measures the deClection of the free surface from its

equilibrium position and the scale of p is chosen in such a

manner that p = 0 cn z = 9. Now, the density is a function of

temperature and salinity. In our treatment of the problemý how-

ever, we wish to avoid the 9nalytic~l difficulties introduced

by including, explic:7tly, the energy equation and an equation of

state. Ile propose irstead to account for the thermodynamics of

the problem empirically by prescribing a density distribution

which roughly conforms to observation * . In particular, we

* In A!'pendix 3 it is sl-own that a specification of the density
distribution and the essumption of hydrostatic pressure are
not necessary for the steady problem.
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choose p = p[z - T(xy,yt)], where the function p of the variable

(z - T) can be prescribed to fit observational data. We observe

that this functional form for p makes the curves of constant

density parallel to each other.

A complete analysis for the unknown quantities as func-

tions of the four independent variables xyzt is exceedingly

difficult and wre are forced to eliminate one variable by inte-

grating our equationo over the vertical coordinate, z, and then

solving for suitably defined integrated quantities. In so doing,

we lose information concerning the dependence of the unknowns

on z. Since we are primarily concerned with general oceanic

circulation and mass transport, however, and since the integra-

tion leads to a cons:iderable reduction in diffculty, the advan-

tages gained more than balance the loss of information involved.

Actually we cannot afford a complete loss of information

concerning the vertical dependence of velocity. This will become

apparent shortly.

The general density distribution must be specialized in

order to permit integration of the equations over the vertical

coordinate. Two cases will be considered.

First, let T be a surface which separates two layers of

constant density so that

p[z - T(x,y,t) I = p, for z > T(x,y,t)

and
p[z - T(x,y,t)] P2 for z < T(x,y,t).

For this problem it is convenient to choose the coordi-

nate system with the xy-planes parallel to the undisturbed
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equilibrium surface and with the plane z = 0 at the bottom of

the ocean, the bottom being assumed plane in this problem. A

layer of constant density P2 extends from the bottom of the

ocean to the height z = D2 + q2 where the constant D2 is the

average height of the lower layer and q2 is the height of the

disturbed surface of this layer measured from the plane z = D2.

A layer of constant density p1 extends from the height

z = D2 + 12 to the free surface z = D1 + ql, where Dl is the

distance from z = 0 of the undisturbed equilibrium surface of

the upper layer and l1 is the height of the disturbed free sur-

face of the upper layer measured from z = D1 .

Then equation (3.a) becomes

p1 = g pl( ql + D1 z) for the upper layer.
(3.b)

P2 = gP l ( 11 + D1 "-2 - D2 ) + gP 2 (q 2 + D2 - z) for the lower layeu

(3.0)

If we denote all quantities in the upper and lower layers

by subscripts 1 and 2, respectively, the equations (1), (2) and

(4+), with expressions (3.b) and (3.c) substituted for the pres-

sure in the upper and lower layers, respectively, become

d u1 + r 1 . i- 2 02v sin() = g + .( 6 V u
__ 1 1 - ax Py1

S+ v +1  2 u{ sin()= -g L + .1(V AiV)vI (6)

+ _ { +~ - 0 (7)
ax ay az
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I

"u2+ 8u2 + 8u2 2 s' (Y)=
at ax 2 __ T2 sin 2

- g[b _q22 + a-a-"-1 ] +.1 (V. AiV)u• (8)

ax ax

6v 2  , 2, v
-- 8 2 u 2• + v 2 v -._ + 29i2 sin( )

aynp
-g[b '92 + a , ] + (V A AV)v' (9)

I f I

au 2 + Iv 2 + - O0 (10)
Tx- ay - ,10

where a = pl/P2, b --(P2 - Pi /P2 =AP/ P2

The problem defined by equations (5) - (10) with appro-

priate boundary conditions is quite general in that no assumption

has been made concerning the vertical distribution of velocity.

As we shall see later, when the equations are integrated over z

and linearized, the simplified problem is still too difficult

to solve. For this reason we formulate a second problem which

allows a more general density distribution but which is more

restricted in other respects.

In this problem we retain, for the time beingthe gen-

eral form p = p[z - T(x,y,t)]. Then the pressure terms in

equations (1) and (2) are
nf

ax pJP =dz+g P+ (1l.a)p ax P 8z x a x

1 ap - g P_ dz + a (1l.b)
pay P ay P " P0

*For the present problem the plane z = 0 lies on the undisturb-
ed equilibrium free surface.
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where p = p[" - T(xiyýt) ] the density at the free surfaces

If these terms be substituted into (1) and (2)9 we have

+ul I-- + V .-l- - 2Xv sin (•) -

8x ay R

Sg dz -. % + (V. (12)
PJz d AV)u o

a-t + U' aVt + V 1 W- 4- 2ýU' sin ()
at8x aYR

g aP dz- gh p + AiV)v'. (13)Y ayo

As stated previously, the problem will be simplified by

integrating the equations over the vertical coordinate, z.

Let us first consider the problem defined by the equa-

tions (4), (12), (13). We assume that there is a depth

z = - h(xyt) below which the velocities may be considered

negligible* (in some suitably defined sense), and we integrate

from z = - h up to the free surface. The depth z = - h(xyt)

may, of course, vary from point to point in the ocean. Since

the velocities are negligibly small below z = - h? the horizontal

pressure gradients must also be negligibly small and we may

therefore write

I OP = 0' 1 y _ 0. (14)
p x pay z=h

We must now specialize the general. form of the density

distribution because an intogration involving p will actually

This assumption is the fundamental difference between the
two problems considered.
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have to be carried out.

Define p = p[z - T(x,y,t)] in such a way that

!p = po a constant for 1 > z > T

p = [1 + c(T - z)]po for T > z > T - d(c,d constants) (15)

P-h = (1 + cd)po for T - d > z

With this definition the density is a continuous function of

depth and the ocean is divided into three distinct layers. A

layer of constant density, po, lies above a region in which the

density increases linearly with depth from po to the value P-h*

Finally, at the bottom, there is a layer of constant density,

P-h" This prescribed distribution agrees well with the observed

density distribution.

If p, as given by (15), be substituted into equation

(14), we find that*

aT Po al 3T a (o
ax P T' Ty -6p C-y (16)

where Ap = P-h - 0'

If we integrate equations (16), we obtain

T- PO C (17)AP

where z = - C is the constant depth of T when I = 0. Physically,

z = - C is an average depth of the top layer or the depth of T

when the ocean surface is undisturbed (i.e. , in the absence of

winds). These two quantities are, of course, identical.

• The algebraic manipulation is given in Appendix 4(a).
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Let us next integrate equations (12) and (13) from

z - h to z = 9. The pressure terms become

-1 dz P-h g (18.a)
-h

-1 { 1j dz =-gD 2a g -h y(18.b)

where D C + d/2, and the complete equations are

a__ J + lU u- dz + vu ,Jau-- dz -2SV sin (Y)
Ft -h a -h a

- gD -. g -h +A 0 + (AI 3 ) * (19)
3x AP x 3 61z _h

a p + uOVdz + v'.1Y..'dz +20Jsin(

8J _h-h 8y

0-6- - + Ay + (A (+20()

gD AP ay 3Z t -h (0

where f fl
TPudz, V =f Tvtdz,
_-h _h

p is a constantlaverage density,

and %(x,y,z~t) - X(x~y~q~t) - \(xy,-ht).

The non-linear terms, u'(x,y,qt) a/3t, etc., from

* See Appendix l+(b) for the details.

** Since the viscous terms are, in any case, only approximations
to the actual shear stresses, we have made the further approx-
imat ion
i q -1 (A3 --U')d z 1-• (A au'l 1A uI hqS -h P a- -h FJ3h'z3 dz z 3 -. _h
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the interchange of integrals and derivatives of the velocity

terms have been neglected. We have defined U and V as mass

transport components rather than as volume transport components

(by simply including an average density in the definition) be-

cause we want to compare some of our quantitative results with

observations and with the results of Munk$ both of which are

given in terms of mass transport.

The terms A -hut I and A3 avIl must give the wind-
3 az- z -h

stress terms since they represent the shear stress evaluated at

the upper limits (the shear stress terms at z = - h are negli-

gible since -h was chosen as the depth where the motion becomes

negligible). Thus

A3 au'- = 'zx = x component of wind stress
3 a -h

3 avl h y = y component of wind stress.

In the equation of continuity we shall want to make use

of the kinematic free surface condition [9]

d - q(xyt)] = 0 at z =1dt

When expanded, this equation reads

will =22 +U110 +Vil an-.at u ax Zv

where w'il etc denotes the value of wt(x,yztt) at z =q.

Integration of the continuity equation (4) yields

8t f . U u _ .n p -a'x ay ax av+y w
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where w1 I is negligible by definition of h(xyt). Substitut-
-h

ing the free surface condition, we have

aV + _ fl2 (21)ax ay at

Equations (19) and (20) are now further simplified by

neglecting the non-linear terms. The reader is referred to

Appendix 2 for a detailed plausibility argument concerning this

step*.

Two final simplifications will be made in equations (19)

and (20). The Coriolis parameter 2 Qsin(y) will be linearized
R

by writing 2 1 sin(L) z py where P = 29/R.

In addition, if the velocities are found in some manner,

then the free surface shape can be obtained by integrating the

equations (19) and (20) (neglecting the integrals of the non-

linear terms) with respect to x and y respectively. This yields

(gD-p I + P-h 2

2 Ap~ )

where X denotes a known function. The solution of this quad-

ratic equation in n is

+ -2-D + D 1+ --- 1X

P gip D2

P-__h
AP

* It must be emphasized that the argument presented in Appendix
2 is one of plausibility and not one of justification. In
view of the desirability of obtaining an analytic solution
we neglect the non-linear terms in the hope that the results
will agree qualitatively with observation and will so furnish
a mathematical description of the ocean circulation.
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But

-2 -
_u \[ + _,_-h 1X •,1+ L-h 1

if 2 2P D2

2 -h I___X <.

Ap gP D2

Hence

1
gpD

and the pressure term can be approximated by

- gD 22
.ax

provided the above inequality holds. It will be shown in Sec-

tion 5 that the values of the constants which are appropriate

to our problem satisfy this condition.

Hence, the final equations take the form

.PY7 = - gD 6 + AU + (22)
"t ax x

yV + P yU = - gD + AAV + y (23)
at y

a"U + 2._=-V (24l)
dx ay at

The boundary conditions are J = V = 0 on a land-water

boundary. The wind-stress is prescribed to be

Z =- (WI + r? sin wt)cos ny, -y = 0

where W', Pl represent the magnitude of the mean wind.-stress
and the amplitude of the time variation of the
wind-stress, respectively,

W is the frequency of the wind variation,

n is the wave number associated with the wind dis-
tribution.
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One can consider the above form for the wind as a typi-

cal term in a Fourier series for a more general wind distribu-

tion. The numerical results in this report are based on a value

of w corresponding to a period of one year and n is set equal

to 2a/s where s is the north-south length of the ocean.

The problem defined by equations (22), (23), (24) to-

gether with the boundary conditions and the wind-stress term

will be referred to as the one-layer problem or Problem 1;

("one layer" because the integration over z is carried out over

the entire depth).

For the second problem in which the density stratifica-

tion is specified as two constant density layers, we have equa-

tions (5) - (10). Each equation will be integrated over the

vertical coordinate, z, with (5) - (7) integrated over the top

layer, i.e., from z = D2 + q2 to z =Dl +nl, and (8)- (10)

integrated over the lower layer, i.e. , from z = 0 to z =D + '2"

As in problem 1, the non-linear terms, uil q n/(t etc.,

resulting from the interchange of differentiation and integra-

tionjare neglected. The viscous terms are integrated in the

same manner and the Coriolis parameter is again linearized.

Then the integrated forms of (5) - (10) are

-"yV 1 + g(Dl - D2 + nl - '2) qlPl= -A + 'lx -'2x (25)
at ax t 1

S+ y U 1 + g (D1  - D2  + q1 "- 92 ) ay = ASV1  + Tly - 2y (26 )

a _ - (p - a P 2 q12 ) (27)ax ay ' ll
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2 2 - PY'2 + g(D2 + n2 )-[bP20 2 + Pmnl]=A.U2+T2x"Uox (28)
at

v+ ••U2 + g(D2 + 2 )a [bP2 12 + P191]= +y Y (29)

at
a'u2 +aV2 

( 0S+- ="o•a (P2q2) (0ax ýYa

where ,Dl+rl =Dl+fll

U= PlUldz9 VI = PlVldzj

SD2 +q2  1 D2 + n2
D 2+ý2 ID2+ý2 ,

2 = pu'dz V P v dz
2 P2u 2 2 =22

T lx T lare the x and y components, respectively of the wind-
I stress on the free surface

2x y are the x and y components, respectivelyof the shear
"t2x' stress between the lower layer and the upper layer at

-the interfaceg

T -y are the x and y components, respectively, of the shear
OX~ OY stress between water in the lower layer and the ocean

bottom.

We specify Tlx to take the same form as ¶x in Problem 1.

The remaining shear stress terms are assumed to be negligible.

The boundary conditions are U1 = V= = V2 = 0 on a land-

water boundary, i.e., vanishing mass transport in each layer*

These conditions are much more restrictive than the boundary

conditions of the one-layer problem since there can be no verti-

cal interchange of transport across the interface at the bound-

aries,

Equations (25) - (30), together with the boundary condi-

tions and the wind-stress, constitute Problem 2, or the two-
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layer problem (the vertical integration being carried out in

two steps).

It may seem to the reader at this point that, since we

have integrated the equations of motion over the vertical coor-

dinate z in both problems, there is nothing to be gained by

considering Problem 2 in which the density distribution is more

specialized that that of Problem 1. Because of the importance

of this point, we shall discuss the significance of the two

problems in more detail.

Needless to say, the problem of greatest interest in-

cludes the more general uensity distribution of Problem 1, the

four independent coordinates x,y,z,t, and the full non-linear

equations. The wind-stress components appear as the values of

the vertical shear at the free surface z = q(x,yt). The solu-

tion of this problem would, of course, include complete inform-

ation concerning the dependence of the motion on z, Being

unable to attack this problem, we are forced to integrate the

equations over z and to content ourselves with a solution for

the transport components.

At first this integration over the vertical coordinate,

z, appears to have only one shortcoming, viz., a loss of inform-

ation concerning the vertical distribution of velocity. We

cannot, however, completely afford such a loss of information

in the formulation of the "transport" problem and some recourse

to field evidence is necessary. Unfortunately, however, accur-

ate observational data are extremely difficult to obtain. In

particular$ it is generally held that the motion in the deep
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layers of the oceans is negligible, but no definite conclusions

have been established to this effect. It is because of this

uncertainty that we consider the two separate problems, 1 and

2. If the motion of deep water is really negligible, the pres-

sure gradient in deep water is also negligible and the assump-

tions of Problem 1 are justified with the result that the thermo-

cline responds instantaneously to a change in the free surface

height provided the hydrostatic pressure assumption is also

valid. Consequently, the only motion existing in the layer

below the bottom of the thermocline is that due to the shear

force exerted by the water at the depth z = T - d onto the water

below it. Vertical shear will extend the motion to lower depths

but the velocities will decay exponentially in the vertical

direction [21 until they become negligible.

If the motion of deep water is not negligible, then we

must consider Problem 2 where no such assumption is made. In

that case, the thermocline does not necessarily respond imme-

diately to a change in the free surface and, consequently, a

pressure gradient may result. Since the fluid in the bottom

layer is homogeneous and since the wave length of the thermo-

cline is large compared to the depth of the lower layer, a

velocity with uniform vertical profile is set up, (hydrostatic

pressure being again assumed). The shear stress, u2xj exerted

by the water of the upper layer onto the surface of the lower

layer also causes a velocity in the lower layer. This velocity

is not uniform vertically. The problem including the effect of
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r2x and, in addition, the stress of the ocean bottom on the

lower layer, is so complex that an analytic solution is out of

the question. We therefore assume that the effects of these

shear stresses on the velocity in the lower layer are negligible

when compared to the velocity resulting from the variation of

the thermocline.

If the two problems were now solved and the results

compared with available observational data, it might be possible

to determine whether or not sensible deep-water motion exists,

As we shall see in Sec. 5, however, Problem 2 cannot be solved

by the methods used in the present paper, and numerical methods

of solution may have to be employed.

4. Solution to Problem 1. The solution to Problem 1

will be carried out by means of a boundary layer technique. For

the convenience of the reader who is not familiar with this

technique andwhowishes to follow the details of the present

sectioný a discussion of boundary layer analysis is presented

in Appendix 5.

The solution of differential equations by boundary layer

analysis can be carried out most conveniently if the equations

are first put into non-dimensional form. Let the rectangular

ocean have dimensions

0 < x < rl, 0 < y _< s (Fig. 1).

Choose as a reference length the north-south dimensioni

s, and define dimensionless coordinates xf, y' by
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y = sy', x sxta.

Then the east-west and north-south dimensions of the ocean in

non-dimensional coordinates will be

0 x <r--l r• 0 < yt < 1.
S, <s

We shall assume that the ocean is bounded by land on

x= 0Or and by water on yt = Oi.

Now differentiate equation (3. 23) with respect to x and

equation (3.22) with respect to y and subtract. Substituting

for the prescribed wind-stress, rxl we then have

-tv " y + py(x+L ) +V = AA A "V Sy)
8t 68 a x a ax. ay

- [nW' + nfl sin wt]sin ny. (1)

Introducing
Y y =_ = Wts s•

and defining
r' r

nW' =VWt nr' r , a =--
W' = W"

equation (1) becomes

_ au ~) + py.I(a_+U )+P
_s a~ x' ay' ax' ay'

x'+ay3 V a3.ay
s3  ax'3  ax"0x' 2a---y a yt3

oW [1 + a sin r]sin nsyl (2)

or
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A a v- _ I a + a) + V

"sW8-J x'x 8y'" W • 0.iL .

a ~ ~3v- a3Uý a ]ý
Ws3  txt3  ax & i2 axi 2 ay' I Yt 3

l- [+ a sin T] sin nsy1 . (3)

Now, since the term (1 + a sin r)sin n sy' is of order

unity and since this term represents the wind which generates

the velocities, it is a:3propriate to choose a dimensionless

velocity which will also be of order unity. Hence we select a

non-rdimensional term containing the velocity which is presumably

of order one. The term suggested by an inspection of (3) is

7V/W and we therefore put

V = BV and I a - .W W

We shall dr,•p the primes from the x' and y' coordinates

and work in the non-dimensional system henceforth. With the

definitions, e = A/Ps 3 and 6 = w/Ps equation (3) becomes

b[V - Uy] + y[Ux + Vy] + V E[Vxxx + Vy - U

x y ¶ X y XX yy UXXY-U yyy

- (1 + a sin re)sin nsy (1+)

where Vx = aV/ax, (Vx - Uy)% 3 2V/axau _ a2U/ayac , etc.

If we non-dimensionalize the momentum equations (3.22)

and (3.23) and the continuity equation (3.24) by means of the

above definitions, we must introduce a new parameter @ and a

variable H defined by

P2-S32 W

*As will be seen later, we shall choose a to be 0.2.
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The equations become

nsb A.U - nsy V + @ -H = nssAU - (I + a sin r)cos nsy (5)

ns5 .--EV + nsy U + @ _- = nssAV (6)

and (3.8) becomes

au + Mv 8_ 1 (7)ox Oy O

Attempts to solve equations (5) to (8) in closed form

were unsuccessful. We therefore resorted to seeking solutions

by a perturbation expansion in the parameter b.

Let 2
U = U + bUI + b2U +

V = V0 + bV1 + b2V2 + too

H = Ho + 6H1 + b2 H2 + off 0

Our formal procedure is to regard the coefficients U0, U, etc.,

as coefficients in a power series in b.

Let us substitute the expansions into equations (4),

(5), (6) and (7). We have

5[Vox + x + *,, - Uoy - bUly - ,,,]

+ y [Uox + bUlx + fee + Voy + bVly +. ]

+ Vo + bV1 + .,. e [Voxxx + bVlxxx +,

+ Voxyy + + "e - Uoxxy - xxy

U - Ulyyy - .. ,] - (1 + a sin T)sin nsy (8)

I
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nsb[ +a 6 + ... ]- nsy[Vo + bV1 +6...

8Ho OH1
+ @[- + b- +"] = nssA[Uo + 6U1 +

a x a x

- (1 + a sinu)cos nsy (9)

n~s[ a0+ 6 a +v + + nsy[Uo +6U 1 +

+ - - + = nseA [V + 6v + ego] (10)

0Uo 1U oSV OV1  OHo OH10+ 6 +... +-2 + 6-- + b[ =-[- +6- +.000.
ax Ox by Oby ft "" (1)

If we regroup each of these equations so as to combine

the coefficients of each power of 6 , we have, upon retaining

terms in 60 and 6 only:

SY[U ox + Voy] + V0 -s[Voxxx + Voxyy - Uooxxy - Uoyyy

+ (1 + a sin -)sin nsy}+ IVoX¶ - Uoy, + Y[Ulx + Vly]

+ V1 - [Vlxxx - Vlxyy- Ulxxy - Ulyyy }6 +...=0 (12)

"nsyVo + @ - nseAU0 + (1 + a sin r)cos nsy

+ ns ý - nsyVl + -l - nssAU 6 + ... 0 (13)

nsyUo + 9 L-0 -nseAVo + s a + nsU1 + 9 2H--nseAV 0
by 8'r 1 y

-'~a 0+ -

O + J+O + + ... -0. (1o.)

Setting each of the coefficients of 6 equal to zero we

"have as the zero order equations for (12) and (i5)
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e6Voxxx + Voxyy Uoxxy - Uoyyy ]-Vo=(l + a sin t)sin nsy (16)

Uox + Voy =0 (17)

and the boundary conditions

Uo = V0 = 0 on x =0, x = r. (18)

With the particular wind distribution prescribed we will

also be able to satisfy the additional boundary conditions

au
Vo = 0y on y = 0,1. (1 8 .a)

We shall proceed to solve equations (16), (17) together

with the boundary conditions (18), (18.a) for the velocities

Uo and Vo.

Define a stream function

: - (19)

so that (17) is satisfied identically. Then (16) can be written

S-•x = (1 + a sin ')sin nsy (20)

where M( ) is the biharmonic operator a + 2 a +
84 P ••ax4 8x2ay2

ay Equation (30) is similar to the one solved by Munk [5]

and Munk and Carrier [6]. In the present case, however, the

non-dimensional time, T, appears as a parameter, so that our

problem corresponds to a quasi-steady problem.

Equation (20) together with the boundary conditions



x = 0 on x = O,r

yy = 0 on y = 0,I (20. a)

can be solved for * by applying the boundary-layer technique

to the boundaries x = Or. The solution is
r13 i3(X-.r)eli/3

=( + a sin t)sin nsy x + r - l/3 +l/3e

+ [(el/3-r)cos( 2 ) +

x/ X3 - -1/3 -e -1/3

+ ( V\3 1/3 2 r ) sin(, e 2
V_2 j( 21 )

From (19) Uo and V0 are found to be

-1/3S•I~/3 + ei/3e~-)
Uo=- ns(l +a sin r)cos nsy -x + r e

1[/3 -.1/3 1/3 EX-1/3+[ 13_r) co s(x•E 6-/ + +(2 V3 E1-/x--) sin(. L•EI3v 2 )]Z •"-

2 V3 2J
,22)

Vo = (l + 3sin r)sin nsy {-- 1 + e(xr)-I

-1/3 /31/3 13 x l/3XE

+ [Cos( ) +( \ V3)s\/3)-sin(x 2 )]e 2)2 2 -2

(23)

The zero-order equations derived from (13) and (14) are

The problem defined by equations (20), (20.a) is solved in
detail in Appendix 5 by means of the boundary layer technique.
The method used in the remainder of this paper is described
in detail in that section. Munk and Carrier [6] used this
method for solving the steady problem in a triangular ocean.
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GHox = nsyVo + nseAUo - (1 + a sinr)cos nsy (24)

GH = - nsyU + nstV. (25)
oy 0 0

Solving for HO, we have, (neglecting terms of order e),

@Ho = (1 + a sin-)(cos nsy + nsy sin nsy)( - x + r - e/3)

+ (1 + a sin ')nsy sin nsy l/3e(X-r)6_i/3

2
- 1/31

V3- 1/3 1/ xeE/ __r )sin(X V )Is
+ 2 i( 26)

First-Order Solution

From equations (12) and (15) the terms of first order

in b are found to be

E [Vlxxx + V lx~y Ulxxyr Ulyyy ]-V 1 = [Vox - Uoy -yHo]T (27)

Ulx + Vly= HO . (28)

The boundary conditions are again Ul = V1 = 0 on x = Or.

In (27) and (28) the right sides of the equations pro-

vide the driving term as did (1 + a sin T)sin nsy in the zero-

order equation. We shall proceed with the solution by means of

the boundary layer technique.

For the interior solution we assume that the functions

are smooth and hence that the derivatives are of the same order
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of magnitude as the functions themselves. The terms multiplied

by e may therefore be neglected.

Let us rewrite equations (22), (23), and (26) as the

sum of two parts - one part, with subscript i, having the same

order of magnitude throughout the domain (the "interior solution");

the second part, with subscript b, sensibly large near the bound-

ary and negligibly small in the interior, (the "boundary layer

contribution")

Uoi = - ns(l + a sin'r)cos nsy(- x + r - 1/3)

Uob = - ns(l +a sin u)cos nsy ei/3 e (x-r) -1/3 +

1/3 1/3 1/33 xe

+ ( 1)/3 r)cos(XV•"I/ 3  1/3_ r)sin(X )]e-
2 )+(Vr3e 2

Voi = - (1 + a sin O)sin nsy
V n ny e (-r)p-I /3+ [cos(x Vr"I3 ) +

Vob = (1 + a sin u)sin nsy 2

-1/3 s V 1/3 - 21/32}

+ (2V -V)sin(X 2 )]e

OHo := (l + a sin r)(cos nsy+nsy sin nsy)(- x + r - eI/3

QH 61/3e 1/3+@H6b (1+ a sin r)nsy sin nsy Il/3e(i•r)e-/

-1/3 V-3--11
-i/3__ 1/3 r)i(V3E

+[(l/3-r)cos(x V 3 )j+( - -1/3_r )sin(x )]e 2
2 2 2
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We expect the boundary layer thickness to have the same

order of magnitude in the higher order solutions as in the zero-

order solution, Viz ,/3 Thus, in order to find the first-

order interior solution, we neglect all the terms with subscript

b since they are negligible in the interior. Thus immediately,

V the interior portion of V is known and is (from (27))

V -[V. -UH
li oix oiy - YHoi]¶

a cos u(-x + r - el/3)[cos nsy + (nsy-n 2s2)sin nsy]9

(29)

From (28) and (29) the interior portion of Ul, Ulit can

be computed directly, giving

2 l/3
Ui a COS - [_ + x(r - e )][2nsy sin nsy +9 2

2 22 n3s3+ Ct
+ (n s y + ns 3 + 2)cos nsy I + C1(YI)

where C1 (yT) is arbitrary and must be evaluated by applying

the boundary conditions to the complete solution, iLe., inter-

ior solution plus boundary layer contribution.

Before proceeding with the boundary layer analysis we

can simplify equation (27) to some extent. Near x = r,

Vox = O(6-1/3), U = O(el/3), and Hoy = g-lO(sl/3). Near

x = O) Vox = 0(6-2/3), Uoy z 0(l), and Hoy = @Q-0(l). Thus in

each case we are justified in using only the contribution of theV er roiede-2/3 •-2/3
term provided E2 >> and e >> Q 1 As will be shownox

later, when the appropriate dimensional constants are substi-

tuted, the error involved in neglecting the other terms is
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extremely small. Thus for all practical purposest equation

(27), near the boundaries can be written

e[vlbxxx + V lbxyy - U lbxxy - Ulbyyy v -lb = VoxU

a cos u sin nsy -/3e(xr)E1/3 +

+[r-2/3 _2-I/3)cos(x Vr3 / , ) ++ [(rj2/ - 2 2___

-2/3 xv3- j1/3 -x- 1/
+ re sin(- 2 )]e 2 (31)

S~2"

Near x = 0, the inhomogeneous contribution which contains the

term e(x-r)e'I/3 can be neglected since its effect is felt only

near the eastern boundary, i.e., near J re Similarly, near

x = r, the terms multiplied by e- 2 can be neglected. Thus

for the region near x =0

E [Vlbxxx + V lbxyy Ulbxxy - Ulbyyy ] -Vlb

-2/3 -1/3)cs(Vs"/
= a cos T sin nsy[(rs -2s )cos( ) +2

-2/3 x -l 1/3 -I/3 (32)
+ r sin( 2 )]e 2

Now suppose the x coordinate is stretched by substitut-

ing x =ek (k > 0). Then (32) becomes

El-3kvlbq + 'l-kVlb~yy 6 l- 2 kUlbýy - FUlbyyy Vlb

a cos -v sin nsy[(re-2/32s-I/3)cos( r k-1/3

r2/ E: k-1/3 k-i/3 2

+ r- sin( 2 ] e 2
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The term of highest order derivative in • is matched

with the remaining largest term in the equation. Hence, we

formally match wl-3kVlb(kk with Vlb' Then k = 1/3 and the

equation becomes

V lbýk - Vlb = a cos - sin nsy[(re' 2 /3-22'l/3)cos(- 2 ) +
-2/3 1•23

+ re sin(-) ] e + 0( (33)
r3 2

The term Vlb can now be expanded in an asymptotic series

in e and only the first terms will be kept. Since the inhomo-

geneous term of (33) contains only exponential and trigonometric

functions, let us try a solution of the form
= ~2/ 0 (k•+o in -• e/22

Vlb = acos-c sin nsye-2/3 V cos(..gV)+7 2l b 1-2 2 (3 4 )

where V and 70 are the first terms of asymptotic expansions

and are to be determined.

If Vlb as given by (34) be substituted into (33) and

sin 7if coefficients of cos -- be equated, two simultaneous differ-

ential equations with constant coefficients results

3 VO 3o v + v O 3a&-V°I + 3 V3 Vo 1/3
2 l - V2k + l- 

r - 2 e 
2/2

(35)
3 V' Vo _ 3 VO - 3 - = r (36)

2 1.ý 2 lký -.ik r (6
3___-

* The fact that k = 1/3 indicates that the thickness of the
boundary layer is of the same order of magnitude in the zero
and first order solution, as was anticipated.
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"Particular solutions of (35), (36) are

Vo=e1/3 -r- =3e1/3_r
1 133 3 V3

The homogeneous solutions may be derived by letting

Vo =Aek V = BeXk

Then (35), (36) become

A(- 3 X X2 + 33) - B[303x- 3V V 2
2 2- -T- =

A3X2) + B [- X X + = 3 . (38)
2 2 2

Hence, since the determinant of these two simultaneous

equations must vanish, we have

(%3 -_2X 3 ) + X %2)2 = 0. (39)

The roots are
3 +Vi 3 - V3i

2 ' 2 7 r~i, - 31,(40)

Then,

1/3 3+ V~i V~ i 3 -23i- V+i (
1 3 - + Ase -2 + A2 e 4A3e 2 A4e + Al1 353

1/3 3+ V•i V3ik 3- V' 3
Vk 33- • + B5e 2 +.B2 e +B3 e 2 +B1±e +B1.
1 3 V

Hence, from (34)

V = cost sin nsy -3co( [esl -r ÷e
lb 1/3 L 2 . 3 2k A'

3 r k + BBe B 3ie +B e"3/2
2( 2 4

3 V31)
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where we have set A A3 = B = B3 =0 since the contributions

of the terms with those coefficients do not tend to zero as

When (37) and (38) are used to get a relationship be-

tween the Ai and the Bi, then the final form for Vib near x = 0

is found to be

V = a cost sin nsy / (e - + C2 )cos(dL)
lb32 2/3

3Pi/3 -r + C)sin(E3L -(/2
+ ( 3 3_ + 03) ) e (42)

3VŽ

where C2 and C3 are arbitrary functions of y and T and must be

found by applying the boundary conditions to the complete solu-

tion.

In a similar mannerl if we make the following two sub-

stitutions for the right (eastern) boundary

(x - r) = e

Vlb a • cos r sin nsy 6 -1/ 3 e ehlI/3[VO + too

lb 1v
*

we find that h = 1/3 and

V lb = a cos r sin nsy F3[ 1/ + Al(y,)1e113

We have used the fact that V lb-O as ---- co (As stated in

the appendix, q --4w when the boundary on the right is under

consideration, since the boundary layer solutions must become

• The same remark applies to the value of h as previously made
for the value of k.
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negligibly small as the distance from the boundary increases,

i.e. , as q or x decreases.

If the three contributions (29), (42), (43) to the com-

plete solution for V1 be added, the final form for V1 is

V1 a cos I (-x + r l/3 [(y2 ns + @n 2s 2)sin nsy + y cos nsy]
Q Si/3 1/3

+ a costsin nsy -2/3 (i - r x + C2 (y))Cos(x Y3-
3 2

-3/-3re-l/ 2__
x + C3 (y))sin(x \/e e 2

3Vr-1/ 3 2-/ x-)

+ a cos r sin nsy e - -1/3 + A1 (Y) e .

(44)

By means of the continuity equation we then find

U1 = cos [2nsy sin nsy + (y 2n2s2 + 2 + @n3 s 3 )cos nsy]

2 ~ 1/3+ (y) _ a cos tunsy sin nsyE 2/3e (x-r) -1/3
2 1

- a cos r ns cos nsy[AI- .1 +(x-r)e-1/3 ] e(x-r)p1/3

3 3

-a cos r sin nsy a-- e - a cos@ r nsy sin nsy
- I / 3 

-1 / 31 
/

/1/3 2/3 x r 1/3 V-1/3 - -3
S[(er/ 2 )cos(X 2-- ) Mm sin(x 23 )]e 2r 2

- a cos r ns cos nsye- 2/ 3 [( 2xe 1 /33 " -2/3 + rx)cos(X0e-I/3)+
3 3 3 2

2/3 1/3 3/3 _
+ rx - 2re )sin( § )V3e 2--

V- 3 V3 3 V3 2

+ a cos eIV (C2 + V C3 )sin nsy cos(x ý 1/3 )+2 lT 0  -1/3 "-1/

+ (C3 - Vr C2 )sin nsy sin (x1 _)I e 2 * (45)

2- -_
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The arbitrary functions of y can be evaluated by means

of the boundary conditions U1 = V1 = 0 on x = 0,r. We have

sin nsy C2 = 2/ [(nsy2 + n2 s2 )sin nsy + y cos nsy) (46)

2/3 2 ~ 2 2
sin nsy A1 + n s )sin nsy + y cos nsy] (47)

C a cos r, [2nsy sin nsy + (y2n2s2 + 2 4-@n 3 s3)

cos nsy][ 2  r +1/3 - . + )cos nsy (48)

sin nsy C3= --- [ 2 6 1/3 (y 2 ns + 2 + @n2 s 2 )(r 1/3 _ r 2  s s2/3) +
\/@ ns

+2 _ 2ge 1/3 ]sin nsy + (5y cos nsy - 4 sin nsy)rE2/3
3 3 7s

-g o ny-L sin nsyhe 2/3 +(re 2/3_ )(y 2ns+gn2s2)sin nsT.
(49)

The first-order contribution to H can be found from

equations (12), (13). The first order equations are

ns a - nsy V + 9 - nssAU

ft1 1x

ns -• + nsy U1 + @ T = ns AV1

from which H1 is found to be

H1 _ nsa cOS ([ns + y 2 )cos nsy + (y3ns + yn2s 2)sin nsy]GZ2

S[l(x2 + r 2 ) + (el/3 - r)(x + F1/3) ] +_i cos nsy +
[2 ns

3 os nnsy
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2/3 1/3 -1/3

+ [( )x +--]ox V _. [(2 ,3coX3 1313-136• 1/3 ,-V]3

r(3 - V C2sin( )]}e 1+ / cos nsy sin nsy

1/3 -1/3 (x-r)e

3 (x - r - e + Alje . (50)

The terms U1 and V1 do not satisfy the boundary con-

ditions V = 0 on y = 0,1. We must recall that these

boundary conditions were chosen rather arbitrarily as being

plausible ones for the type of wind distribution specified, and

the y dependence of the zero-order solution was accordingly

chosen as sin nsy. We cannot expect such a y dependence to

satisfy all the conditions for each set of equations. The fact

that U1 and V1 do not satisfy the boundary conditions does not

seem to be very serious since we do not really know what con-

ditions are appropriate.

If we next consider the equations resulting from equat-

ing the coefficients of b2 to zero, we obtain from (8) and (11),

S[V2xxx + V 2xyy - U 2xxy - U2yyy ] - V2  = (Vlx - Uly-YH1) T

U2x + V2y = - Hl 1 .

In the boundary layer, near x = 01 Vlx is of order -

Thus we can expect V2 to be of order 6-1 in that region. By a

similar argument, we can expect V3 to be of order e-4/3, V4 to

be of order e'-/3etc. If we therefore write out the series
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V = Vo + bV1 + b2V2 +b3V3 + b 4+"

we have in terms of orders of magnitude near x = 01

V = O(C"1/3) + b& 1/3 0(6-1/3) +

+b2-2/3 (S-1/3) + b3C-i 0('i/3) +

-1/3
or factoring out the O(e ), we have

V = 0(C-i/3)[I + be-"/3 + (6E'I/3)2 + .. ]

The perturbation scheme may be expected to be valid

provided bE"1/3 1i. We can expect a fairly good approximation

from only the first two terms provided the more stringent con--1/3 -1/3
dition b e1/3 << 1 is imposed. If be = 1/5, the error

involved in neglecting the third term is no larger than 5% of

the first term.

For yearly variation of the wind, b 1/3, 1/6. Hence

we shall keep only the first two terms of the series. It should

be noted that a determines the magnitude of the effect of the

perturbation but it has no bearing on the validity of the ex-

pansion.

Numerical Example

In order to discuss the above solution, we shall pre-

scribe numerical values for the constants of the problem. Let

S8 -13-l 1
r- = 6.5 x 108cm =2 x: 101cm-1 sec-l
Ss = 5x 108 cm D =5 x 10 cm(C = 200m., d = 600m.)
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A = 5 x 107cm2see"= 2 x 1O'7sec-I*

= 2n/s W' = 0.65 gm cm-l sec" 2

The magnitudes of rl, s, A, D correspond roughly to the

Atlantic Ocean parameters. The value of P is chosen so as to

give the best approximation to the Coriolis parameter in the

latitude of Cape Hatteras. The equality n = 2t/s corresponds

roughly to the east-west components of the trades and the west-

erlies, The value of w corresponds to yearly frequency of the

wind variation and W' = 0.65 gm cm- 1 sec" 2 is the value used by

Munk [5] for the wind stress.

Then the dimensionless constants have the values

-18- = 2 x 10- 3  ns = 2n
A -6 ngD

A=2x10- Q =---= 0.123
Ps3  P2 s 3

r 1.-3

Also P' has been chosen so that

a = 0.2.

The results for this numerical example are shown in

Figs. 2 - 6.

In Fig. 2 the non-dimensionalý north-south component, V,

of the mass transport is plotted against xv near xt = 0 for the

value y' = 0.25. The region of large V corresponds to the Gulf

*Corresponding to an annual period for the wind fluctuation.
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Stream and the section adjacent to the Gulf Stream, with nega-

tive V, corresponds to the off-shore counter-current.

For the Gulf Stream, the extreme values of V are in

phase with the extreme values of the wind. Howeverl for the

points between the maximum and minimum values of wind strength,

the transport lags behind the wind.

During one cycle of wind variation the following result

is found. The transport and wind both have maximum values at

T = R/2. Immediately after r = n/2, the wind begins to decrease.

The transport also decreases but it lags behind the wind. At

r= =n the wind has reached its mean amplitude and the lag of the
,

transport is greatest, viz., an interval of 9 days elapses

between the time the wind reaches its mean amplitude and the

time at which the transport reaches its mean amplitude. After

-u = , the transport begins to gain on the wind until at

-U= 3n/ 2 , the two are again in phase. The wind and the trans-

port now begin to increase and the transport again lags behind

the wind, The maximum lag is reached at r = 2n at which point

the transport begins to catch up to the wind. They are in phase

again at - = 5n/2. This cycle is repeated indefinitely*

The discussion presented here is based on the assumption

that the first two terms of the series representin a sufficient-,

ly accurate manner, the complete solution. One result of this

assumption is that transport reaches its maximum value at r =n/2.

It is shown later that the value 9 days is independent of the
specific value of the frequency for slowly varying winds.
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The perturbation contribution vanishes at that instant since

its coefficient is cos r, Thus, no matter what the value of b

(essentially, the frequency)7 as long as it lies within the

limits necessary for the validity of the above method of solu-

tion, the maximum value of the transport will occur at T = m7t/2,

m = I1 5, 9 ... , and its value is given by 1 +a times the

steady transport value.

The interval of 9 days between the time at which the

wind reaches its mean amplitude and the time at which the trans-

port reaches its mean amplitude is also independent of the fre-

quency. To show this let Vo = (1 + a sin ')Q and V1 = aL cos r.

Then V = (1 + a sin r)Q + ba L cos t. Since the mean value of

the transport is V = Q, we can find the time at which this occurs

by setting (1 + a sin r)Q + baL cos z = Q

or Ltan r = L-

Since -r is small, we can write tan T - v and therefore

Lb
Q

Substituting u = wt and b w/Ps, we have finally

t L 1

which is independent of frequency and a.

It is apparent from Fig. 2 that the out-of-phase effect

is of relatively greatest importance in the counter-current

rather than in the main stream. The graph shown the various
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effects only up to the eastern edge of the counter-current at

xt = O.1. For x? > 0.1 only the mean position of the transport

is plotted since the deviations from this mean position are very

small.

Near the eastern boundary of the ocean (Fig. 3) and in

the counter-current region (Fig. 2), the absolute magnitude of

the extreme values of the transport (which is now negative) are

also in phase with the extreme values of the wind and the trans-

port lags behind the wind at all other times.

Figures 4, 5, and 6 show surface contours* for the

southern half of the rectangular ocean for r = 0, n/29 nj 37/2.

The contribution of bH 1 is very small throughout the ocean** and

has therefore been neglected. Thus the graphs for r = 0 and

S= n coincide. This result is based on the assumption that D

is 500 meters in thickness. If D were increased the above re-

marks would be even more appropriate. If D were decreased, the

contribution of the perturbation term would be larger and we

would therefore have to account for it. The value of the first-

*If we define the thermocline as the surface at z = T - d/21
then the contour lines of Figs. 4, 5 and 6, multiplied by
-200 represent the deviation of the thermocline from its
equilibrium position at z = - C - d/2 = - D.

** If for any of the variables the magnitude of the coefficient
of b in the perturbation solution is of the same order as that
of the zero-order term, the coefficient b = 0.002 renders such
a correction negligible. Throughout the present example, the
only sizable contribution of the out-of-phase term is found
in the north-south transport V in the boundary layer where
the function V increases by order e-L/3. However, Ho and H1

have the same order of magnitude throughout the ocean so that
the first-order correction H1 can be neglected throughout.
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order velocities would also be altered when 9 is changed. We

shall consider several values of Q when we discuss the defloction

of the thermocline in the steady two-layer ocean.

The meanmasstransport of the Gulf Stream (correspond•g to

the steady problem) is 26.6 x 106 metric tons per second as com-

pared to Munk's value [1] of 36 x 106 and the observed value of

72-80 x 106 metric tons per second. Munk [5] used the east-west

component of an empirical wind system and the discrepancy is

therefore due to the difference between the two wind systems.

At the time of maximum (minimum) wind the transport is 20% higher

(lower) in accord with the remarks made previously in this sec-

tion. In the counter-current the steady mass tranport is 4.61 x

106 metric tons per second.

The difference between the computed and the observed

values is not surprising when one considers the many idealizing

assumptions made. Such features as the straight coast lines,

the siiamlified theory of turbulence used, the neglect of the non-

linear terms, and a more realistic stress-effect of the wind on

the water could well change the quantitative results by a factor

of two or three,

The problem as stated and solved by the above method

gives no sensible east-west variation in the position of the

Gulf Stream, but a careful investigation of the eastern boundary

of the Gulf Stream shows a very small narrowing of the stream.

How well such a result agrees with field evidence is uncertain

since our solution yields no inshore counter-current.
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It would be interesting to ascertain how well our pre-

dicted results agree with observation; specifically, if the mass

transport of the Gulf Stream responds as indicated to variations

in the wind and if the lag of the transport is independent of

the frequency.

S5. Methods of Solution for Problem 2. The equations

(3. 25) - (3. 30) are non-dimensionalized below in order that

boundary layer theory may be employed. Using the arguments of

Section 4 for the method of non-dimensionalizing, we have

x = sx 1 , t =---
y = syll 2

ng(D1 - 0 2 )
P 2S3

vI gD2
V2 =2 s =-4_

W Ps3

"u - U2 pU =W P s•

H =-----, a--
H Wa= P2

H b = L2 _I P b
W ' P1

Then equations (3.25) - (3,3O) become
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nsb a 1 - nsyVI = - @ OH - [ - a 011 ] 1 +
K' ax a 6' x_

+ nseAUI - (1 + a sin ¶)cos nsy (1)

1 + nsyUl Q H - aH s 1 l+ns

0-u ay a- all2  ]AVI (2)

u-- + Iy "b- [HI- aH2 ] (3)

ax2  ayf
.!U _ yV2 = - x (H + bH2 ) - XH2 1 (HI + bH2 )

. - + yU2 = - (Hl + bH2 ) -%H 2 'L (H1 + bH2 ) +EV 2 (•)

aU2  + V2  MH12
x- ay - -(6)

Steady Wind

Let us first treat the case of a steady wind, i.e.,

a= 0 and W/8t = a/0a = 0, and let us assume thati in the case

of steady motion, there are no velocities, and hence no horizon-

tal pressure gradient, in the bottom layer. Equations (4) -

( 6) are then satisfied immediately by

U2 =V 2 =, H2 = - H1  (7)

and equations (1) - (6) become

nsyV -2- Q[@H + ri" H2 ] + nseAU 1 cos nsy (8)
"1 x 2b 1 1

ns .1  = [@H1 + H] + nsebV 1  (9)nsyl •2b 1

uJ1 + av 0 . (10)
"a-+ ay
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Differentiating (8) with respect to x, (9) with respect

to y$ and substracting) we have

6[Vlxxx + Vlxyy - Ulxxy - Ulyyy]- V = sin nsy (Il)

which is equation (4.16) with a = 0.

Thus the transport distribution for the steady case is

precisely the same as it is in Problem lo The difference in

behavior enters into the non-steady case when the motion of the

interface affects the motion of the water in the top layer.

If we set a= 0, then equations (4.22) and (4.23) are

the solutions for the present U1 V1. Similarly with a =0

from equations (8) and (9) above

nsX H2 + GH

~fb 10

where Ho is given by (4.26). Then H1 may be written

@+ @9/1 + L2n s---- H

Qb 0
H1 1 - - (12)ns%

b

However, if 2ns%/Gb Ho < 1, then H1 may be written

approximately
nsX

S+[ + --X H]
H 1 H 0  (12.a)

b
H2 can then be evaluated by

HI2 = - . Hl (7)2 b

If the dimensional constants* which were used in Problem

*The depth (D1 -D 2 ) is given the same value as D in Problem l1
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1 are used here, and if we put b = .005, then (12.a) is correct

to O(10"2). The streamlines and the thermocline, H2 are shown

in Figs* 7 and 8.

In Fig. 8 it can be seen from the contour lines of the

thermocline that there is not much deviation of the thermocline

from its equilibrium position* In particular, if the initial

depth be 500 meters, the thermocline does not fall more than 35

meters below its average depth in the southern half of the ocean.

In checking our results with observation, we find that

quantitatively this result is in poor agreement with field evi-

dence. The definition of the thermocline in the real ocean is

vaguef however, and hence the two parameters @ (corresponding

to the average thickness of the top layer) and b (the density

difference) are not clearly determined. In fact, they may vary

over a wide range giving rise to a very considerable variation

in the deflection of the thermocline.

In Fig. 9, the vertical cross section of the ocean at

y' = 0.25 is shown for four combinations of Q and b. If we

consider the curve with Q = 0.0492 (D1 - D2 = 200 ms) and

b = 0.0025, our result is in good qualitative agreement with

measurements of the thermocline off Chesapeake Bay [10]. Quan-

titatively, the values are out by a factor of (approximately)

three*

Our solution shows a tendency for the thermocline to

approach the surface in the northern part of the ocean (Fig, 8).

As a matter of fact, if @ and b be chosen small enough, the
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interface lies above the free surfacel Such a result is absurd,

of course, but the tendency of the thermocline to approach the

surface in the northern part of the ocean is clearly indicated,

This-fact agrees with observation since the thermocline actually

reaches the surface in the north.

Non-Steady Wind

In the treatment of the non-steady, two-layer problem,

we shall neglect the terms with coefficient X in equations (1),

(2), (4), (7). For the steady problem, if @ and b are chosen

appropriately, it has been shown (equation (12. a) that the error

involved herein is small.

Two methods of attack have been applied to the lineariz-

ed equations of (1) - (6). Our first procedure is that used

in Problem 1, viz, a perturbation in 6 followed by a boundary

layer analysis.

The difficulty in the first method of solution arises

from the fact that the quantities with coefficient b are no

longer small, i.e., the magnitude of the terms is no longer

governed by 6. In particular, in the continuity equation (3),

the term on the right hand side has magnitude b/b H1 (based on

the steady solution). In the interior of the ocean where U1 and

V1 are O(1) and H1 = 0(Q"l), in order for the perturbation in 6

to be valid, we must have 6 < < 1/@b. With the dimensional con-

stants of Problem 1, this means b < < 10-4, Such a value corres-

ponds to a wind period of one hundred years or more.

If the above results were the only objection to the
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analysis, the problem as defined thus far might still have some

qualitative value. Unfortunately, for such a small value of 61

the terms in the equations of motion which involve a time-

derivative become very small, and we are wholly unjustified in

neglecting the non-linear terms while still retaining these

time dependent terms.

In spite of these objections, the analysis for Problem

2 by the first method was carried through but the results were

not computed numerically. The analytical results are listed

in the next few pages,

U1 = U1 0 + bU1 1 9 V1 = V1 0 + 6Vlit H1 = H1 0 + 6Hl1

U2 = U2 0 + bU 2 1 9 V2 = V2 0 + bV2 1 7 H2 = H2 0 + bH2 1

where U2 0  V2 0 = 0 by equation (49), U10, V10, H1 0 are given by

equations (3.22), (3.23)and(3.:26) and the remaining values are

given below.

2
v a COS x + r - 1/3)[(n2s2 + •ns•)sin nsy + Z cos nsy]

11 b b

-2/3 -l3/3
" a cos r sin nsy e .2/3 1 - r 2 )x e

+ sinos x \F3 nsys ea ns sin nsy
3 2 Gb- 1/3 -1 /3 x1/3 3-12

+ L cos si nxI/3)+(2re-/3 Ix sin(X ,'I•~~l 1o-/-3- v 2
+ a cos T• sin nsy C2 cos(x V c -)+C3 s'n(L- C 1 e _-i
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U,, =-ý,(g-s3 n~22 + r- 2 )cos nsy

2yCos U-z + a rjsCy - sin

+ 2ns in s + c~-;Cy)- ZO-Usy innsyt'F-2/3e (x-r) 3
b YIJ

1[-r /3 -1/ 1/ 2 1/cs 
e /

+L~~sin(x /'3e )+(re1  E___ -l

COS2 22

s 1/3- nsy 2 e 1/3 )x-r- e1/3)
a o s nnsy[( e b 3

+ F- 1/3 A],e(x-r)e- 1/3 -a c 0 S .rin sy[-xre1 3

+ .2E-1/3)s ' V-13 .) xr -2/3 - x-1/3 -)o

32
1/3 c -1/3 33

x a /3-/ -Y.. eU 2 A. si a[ cos _a - y 2/
2 ey 2b 3 i n [2 ,3

rE ~ -1/3 XE 1/3 xV-e /
co ,jeos3 2 2

__~~~ 

1/3+r ) (r e /

+ +rl/ 1/3 +Lr 2i -1/3ns

3 3313-

a c o s y . S 131 sin nsy[V3C - C )sin( X __1/3__

nsy~sn .II(1/3 Gb -1/3
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+ cl3 e ±r -/ y sin nsy E~l - ./)ny

re 2/3 x -x -3 "c/3 -2/3 2c-1/3
3 332 3 3

2 r l/3 ( 1/3 -1/3+ ny7(: os x /-3- 2reI/
b 3 32 3

-21/3 - -1/3 2 1/3 2/3

] i (x V/3 6) Is e 26bQ 3 2/3 / 3 3 3

_____1/3 
2 1/

SV 2 e 2 E2"/3 y sin nsy [(C2 + •3 C3) cos
/3- -x/1/3-
1/V3e-+ ( .) I e 2. (x ) 3 -\/3 C2 )sin(x 3- &e22

V2  a cos (y cos nsy + nsy 2 sin nsy)(x- r + E1/3)V21 @b

i x • (-r)€1/3

"+a cos nsy- 2 sin nsy - r + A2 (Y) e(xr) j

2 c x- -1/3
"+ a cos Ir-;b--sin sy cos(x 2

2• -1/3
-- 1/3 ____

" (2r eI/ 3  ) -_L sin (x v3 1 e 2
3 v2 1 1j

c sinasy C2 2 cos(X ) +C32 sin(XT2. _ e" 2+b ý 2o2 2 32 22

a cos Z- rx-x 1/3)[(2+y2n2s2)cos nsy+2yns sin nsy]SC2sy(

+ acos - a co s r _ sin nsy9b TY L b 3

-. l3)cos(X V3 _ -1/3 1n./3-1/3
3 2 3+ \/3 2* 3v3
(1/3 - r)- -1/3 1/3

+ ( _2L sin(x-----)+(.L-- _ ) x Cos
3 \r-2 3 3
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(x V3 6-'1/3 e x 2-1 // sin 3s

* ( ... )]j e" - acosu • 1/ 3 l
a o y Qb

\/-1/3
" [(��3 C22 " C3 2 )sin 2 ) " (C2 2 + V/3 C3 2 )cos "-i32

1/3 -x /
-x 2 ) ] e 2 - a cos r-!8 n sin nsy(xr-'l/

2y 6Y b 3

+ A /3 (x-r) e I/3
Se

bH2 a s- [•1/3(x - r 1•1/3

21 a -113 2/ y sini13-2/3 1/ 2/3

) -sin(x 73 ) + (xT•r 2x / 1
3 2 3 3

cos~xV3 6-1/3 -1 J/3
- -1/3 _ 1 /3

cos(x )]e 2- L. si [(C+ (2 in C3)
2 ysn3C222

(x-r)-1/3

- -1/3 -1-//3 -1/3
es-r ) + 13C)sin( )]e2 (C 2 3 .-" 2 22

2/3cos nsy3 sl nsy 1/3 1/3

3 b 3 3 25

+ ' ]e(x-r)&CI/3

1/3 - -1/3
3 '/ 3\/• 2

y L + (-r)x ]os(X V. )] e 2+[333 2

S1/3 yCsin nsy 22 + C2)cos(x 1/3)
2 b L 223

_1/3 3
+ (C3 2 - V3 C2 2 )sin(x X 2 ) e 2
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+ nf o Cost - [l(x2 + r 2 ) + (si/3 r)(x +

L 2

[yn2s2 sin nsy + ns cos nsy ]- 2 (Cos flKLs + y sin s)
3 ns

+ cosrb +• M--S) [.1 (x2 + 2) + (Fl/3 1 )x+E/3)]

"[nsy3 sin nsy + y2 cos nsy ] + 1 cos - (1 +nSbG )

r 4y2 Cos nsy + nsy3 sin nsy -11 sin nsy 1. cos nsy]
nis n2 s2

The functions AA 2 C , C2 C 3 2 C39 022, C33 are determined

by applying the boundar, conditions U1  V1 = U2 = V2 =0 on

X = Or,
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A sin nsy 61/3. (@n2s 2+ Y..s)sin nsy + yCos nsy~
Ib b j

C2 sin nsy .1/3- (22 + 2Ln)sin lsy + Y Cos flsy

C Gy .1r - E ý23 (gn~s3 + b -+2)cos nsy

2ysys 2/3 2 2 22/3 2
+ -nsin sn n sy ny (nl s Y E e2/3

b3bg 3bg Q

fls )Cos s

61/3r2 
1/ 31

2 - sin nsy C03 - 2 -re13+ 6 2/ 3) n2S2 -i (nsy 2

+-~ sin nsy + 6 / 3 ns 2 2s2y+~csn~

ns ý t( 2  b)inns2- )sinnsy +y'L sny

n +y nsy/ A2  + )l3 ~ ~ ~ ssin nsy)- y^

sin nsy 022 = -Cr l/3)(y Cos nsy + nsy2 si nsy)

01 - - 23)[2 2~ 2 s)os nsy + 2yns sin nsy]

+ .2/ [2- sin nsy + cos nsy - Cos nsy]

V3e1 3 
3

sin nsy 0 32 = (L.2 - rJ3[nsy2 sin ___+_2sin__y

2 2 ns

+ 2/3( Cos0 nsy +3 ny2 snny

+ .r.1/3.(nsy 2 sin nsy + 3y cos nsy)e
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The second method of attack on the non-steady two-layer

problem consists of separating the expression for the wind-

stress into its steady and periodic parts, i.e.o (1 + a sin T)

cos nsy = cos nsy + a sin a cos nsy, and treating each problem

separately, This method of solution was also attempted in the

one-layer problem. The resulting equations could not be solved,

however, without recourse to numerical methods. In the present

case, we hope to make use of the smallness of the parameter b

in seeking a solution.

In equation (3) the right hand side may be approximated

by 8/8Ef (- H 1 + aH2)' a/e (- H1 + H2 ). H2 / a.

The steady problem with cos nsy as the wind-stress term

has been solved previously. For the time-dependent problemV we

write

HE - HlI H2 = 2 bH2, - - _r .

Then, with the time-dependent part of the wind-stress only, (1) -

(6) become

nsb - - nsyV1 = + nseAU1 - a sin T cos nsyft ax

ns + nsyU1 _ 1 + nseAV1

fx ayau- 1 = - 3H 2

alT- yVH 2-i(• ) + r:AU2
b Y2ax W
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- a-IV_ + : . + __H + A

81U 2  a Y ay

au2 8V2 a
_U2+ =.•

ax Qy -

Next let us write the wind-stress as the imaginary part

of aeir cos nsy, Then if we take only the imaginary terms in

the remaining parts of the equation, the results will be the

same as those above.

Define

U1,2 = aeikul, 2 (xy), V1 , 2 = aelrv 1 2 (xy), H1 ,2=aei~hl,2(xlY).

The equations become

ah1
insbuI - nsyvI = - 1 + nssAu1 - cos nsy

ah1
insbVl + nsyul = + nssvY

Ulx + vly = iyh 2

-u2 Yh2+ 3 + ehuh2

ax ax 2

ibv2 + yu 2 - + =h-•- + 2

U2 x +V 2 = " i7h2

The above equations mrsit be solved for the six unknowns,

The difficulty arises in trying to match the boundary layer con-

tirbution with the interior solution. To conserve space, we

shall not give the entire analysis here, but shall confine
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ourselves to the determination of the boundary layer contribu-

tion and to an indication of the ensuing difficulties.

Carry out the following three steps:

(a) Let x = /3ý, i.e., stretch x coordinate near x = 0.
(b) Substitute vl, 2 = / 2 Y = c 1/3

(c) Keep the leading terms of the equations.

The equations then reduce to

nsyvI = h

insbp'I/3v1 + nsyuI = -hly + nsv 1 ýý

Ul + Vly = iyh 2

yv 2 = (hiC + h2 ý)

ibe l/3v + yu 2 = .? (h + h2 y) + v 2

u +2ý + V2y = iyh 2

Eliminating all the unknowns except h2, we find

h 2C - h2ýý h 2C + L h2 0

where -1/3 L 2wher 51= ibe'i3 L =iyy2(ns +_)

Solutions are

4 Diý

h2= Ci e
i=l

where the Di are the roots of

D - 1D 2 -D + L = O.
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They are

-(4 I+2A+2B). +( 1 +2A+2B)2- 2(A+B +2)
DI192 = -2

D4- b1+2A+2B + (1Alb b 1 +2A+2B) 2 - 2(A+B-. - 2)D 3 , 43 
- 2- 2

where _

A=~ +63± 2 3+ 1/3
(+ +½ _-1

3~ 2 3.., 3 [2(L-#]+3+. 27

3 - -_- 1/

(~ 2 3 27 3.(. 3-) 2[7 +-

The above solution for h2 must now be substituted into

the previous six equations and the boundary layer contributions

for U
1 
12 vl,2, h 1 2 can be derived by keeping the parts which

-4 0 as E ---->m. If the interior and boundary layer solutions

are added, the Ci can be evaluated by means of the boundary

conditions U1 = V1 = U2 = V2 = 0 on x = Or.

Practically, this is an almost impossible task9 and

numerical methods must be employed for the whole procedure.

In view of this fact, nothing is gained by the analysis and the

entire solution might as well be carried out numerically from

the very beginning.
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Since we have been unable to arrive at a useful solu-

tion for the non-steady ocean circulation without assuming

negligible velocities in the bottom layer, we have no assurance

that our analysis is valid. Reliable observational data which

might guide us in this matter are not available# We may per-

haps gain a little more confidence in the results of this inves-

tigation by the following considerations.

For the formulation of Problem 1 it was assumed that

the velocities, and hence the horizontal pressure gradient,

vanish in the bottom layer, This, together with the hydrostatic

pressure law, irmnediately led to the conclusion that the thermo-

cline responds instantaneously to any motion of the free surface.

Naturally, this can hold, if at all, only for sufficiently

slowly varying circulation.

Some investigators are of the opinion that the very

opposite situation actually exists, ioe.s the thermocline re-

mains essentially fixed and does not respond to wind variations

of, say, seasonal or annual periods. This is perhaps a more

reasonable assumption because it is based on the idea that the

frequency of wind variation is much greater than the important

frequencies of free oscillations of the bottom layer.

Let us assume, therefore, that the shape of the thermo-

cline remains roughly fixed in such a manner as to result in a

vanishing time-average horizontal pressure gradient in the

bottom layer. That is to say, the thermocline adjusts itself

to the mean wind distribution so as to give zero pressure



All-101 74

gradient for the case of a steady wind having this mean distri-

bution. If we now have a time-dependent wind, we will have

non-vanishing pressure gradients in the bottom layer as a result

of changes in the free surface shape. The resultant velocities

in the bottom layer will tend to be uniform vertically (except

as influenced by friction) provided the bottom layer has fairly

uniform density so that the pressure gradient is independent of

depth,

Suppose we have a two-layer ocean and integrate over the

top layer only. If we make use of the assumption of a station-

ary thermocline, and if the effect of friction at the thermo-

Cline on the transport in the top layer is negligible, then the

resulting transport equations are essentially the same as those

attained in Problem 1. Hence, the distribution of mass trans-

port obtained in Problem 1 may be expected to be valid now,

provided it is interpreted as the distributions of transport

above the thermocline, Since this is the transport usually

measured, we may still hope that the results are useful.

6* Conclusions. If the velocities in the depths of

the ocean are negligible, then the horizontal pressure gradients

are also negligible and the thermocline responds immediately to

a change in the free surface height provided the hydrostatic

pressure equation is valid. For such a case, the following

results appear to be valid (within the framework of subsequent

approximations made in this report):

(i) For a varying wind with a period of three months or
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more) the mass transport through the Gulf Stream responds to

the wind but lags behind it at all times except at the instants

of extreme wind variation when the two are in phase.

(ii) The maximum lag appears when the wind is in its

mean position and an interval of about nine days elapses between

the time at which the wind reaches its mean value and the time

at which the transport reaches its mean value. The actual

length of the interval, i.e.* nine days, is independent of the

frequency of the wind variation.

(iii) The value of the maximum mass transport through the

Gulf Stream does not depend on the frequency but only on the

maximum strength of the wind.

(iv) The Gulf Stream does not undergo any noticeable east-

west shift nor is its width altered because of the wind variation.

For the steady two-layer problem, the streamline pattern

coincides with that of the one-layer case. The computed steady

position of the thermocline can be made to agree qualitatively

with the position of the observed thermocline provided the two

parameters (a) the thickness of the top layer and (b) the density

difference, are chosen appropriately.

At the outset of our investigation we had hoped to solve

the lineariqed, non-steady, two-layer problem with no a priori

assumption concerning the vertical distribution of velocity,

However, we were unsuccessful in doing so except for the case

of a wind with a period of oscillation of 100 years or more.

For such a low frequency, the retention of the time derivative
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terms in favor of the non-linear terms seems wholly unjustified.

The only conclusion (which may not be justified because of the

previous statement) resulting from this last investigation is

that the transports in the lower layer are of the same order of

magnitude as the out-of-phase transports of the upper layer.

In view of the statements made at the end of Section 5,

the results listed for the one-layer problem are approximately

valid for the non-steady two-layer problem provided:

(a) The thermocline adjusts itself to the mean wind dis-

tribution and remains fixed.

(bW The mass transports of Problem 1 are interpreted as

the transports in the upper layer.

The assumption of hydrostatic pressure is not necessary

for the solution of the mass transports in the steady problem.

Wherever the results of this analysis permit a compari-

son with observation, good qualitative agreement is achieved,

but the quantitative results are off by a factor of about three.

In view of the many idealizing assumptions made, however, no more

than qualitative agreement could be hoped for.

A number of features have been left out of the present

model. Changing topography, non-linear terms, variable eddy

viscosity and many other features could combine to change the

results noticeably. However, the analysis of the problem in-

cluding most of the features which were omitted in our model

would probably require a numerical treatment.
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Appendix 1. Transformation of the Differential Equations from

Spherical to Rectan ular Coordinates.

Consider a rotating spherical coordinate system; let

r be the radial distance from the center of the sphere, 0 the

colatitude, q the meridianal angle. The equations of motion are*

Du - 0 2 r sin2 9 - 2wQ sin 0 1 8p g, + V (-C" Ai V) u
p r p

v + U +v Yv w vv + uv wcot 9 + 0 2 r sin 9 cos 0
"at r8" r sinQ Ty r r

- 2w 0 cos 9 = - 3 1 9 +l(v. Ai v) vprS@

S+ ua + v 8_w + w aE + wu vw cot 9 + 2rQcos 9at r r r sin @9 8 r r

+ 2u 9 sin 0 = iV - Ai V)w
pr sin- @ p

where D is the material derivative of the radial velocity in
Dt

terms of sphorical coordinates

g' denotes the gravitational force

1 V Ai V =_ AV 2  + -(A ) and V2 denotes the
p p par 3 ar

Laplacian operator for the two dimensions 9 and .

We shall neglect the radial acceleration and shear terms

arising as a result of the velocities relative to the rotating

We shall not consider the non-linear terms or the viscous
terms in the radial equation of motion; hence, this equation
is written in operator form only.
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sphere. We then have

p 8r

Y + u .v + Y aXv v w 2 c + 2r sin 9 cos
at ar r aQ r sin Q Np r r

-2w~cos 9 = - .1 3* + AV 2v + ! .- (A 2v)(2)
pr 8 r 3 ar

aw + u. .w + v aw w + cot + 2vQcos Q
Yt 7r r 79 r sin Q9 a r r

-2u 0 sin Q=_l 1 .in @ 22 + AV2 w + lp•r(A3 •w (3)
P 2r si si ay p ar 3 ar

where g = g' - 31C2r2 sin2 @) is the apparent gravitational

force. The viscous terms for equations (2) and (3) are

AV V- = __

6Q 67 sn9aq sin 9 sEnQ8

Ar7 a V2 r2 sinE9 sin2 9 (

A o2 si w -i• 2csinQ ~

Since the region of interest to us consists of a very

thin layer on the surface of the globe, we shall approximate

r by R, the mean radius of the earth, whenever r appears in

undifferentiated form. At the same time let us define a new

east-west coordinate by x =cpR sin 9, a north-south coordinate

by y = R(I - 9) and a vertical coordinate by z = r. Then
2

equations (l)-(3) become

p 3z
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av + v v 2_Ev+ uv w2 cot 9 + Q2r sin 9 cos 9
""E Ua z y ax R R

2w 0cos+ A ot dv + a2v + a2 v v 2pY R y a a R2sin2@

2 cot 9 aw + 1 a (A3 vw
R axj pFz'oz'

w + + c + 2v Q cos 9 - 2u wswn u
7t "dz v dy + rx R R

.1-§ +A cot 9 w+a 02w 4.a2w- 1 2 cot@O VI
p dx L R dy+ a =x - T2 s i 7n 9 IR OX

p1 z (A3 27
+ F 8"' z• (6)

Since R is very large, we shall neglect terms divided

by R. We can do this provided the region is sufficiently far

removed from the poles (9 = 0,) where cot @ becomes infinite.

The velocity component u is assumed to be much smaller than the

components v and w so that we can neglect u throughout the

equations of motion.

Ordinarily, one uses the velocity components uvw to

correspond to the directions xoyz respectively. In equations

(4)-(6), u,-vw correspond to z,y,x respectively. The negative

sign was carried over from the definition of v which was defined

positive southward. If we revert to the more familiar nota-

tions and write u' = w, v' -v, w' = u, we have for equations

(4)-(6)(with the terms with coefficient 1 and all terms con-
R

* tamning wt neglected)
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au'+ AV+ v'y-' - 2 v' sin (Rt)

RE x ay

P 2a {.a'+ =62p 8z az

8V' u'SV'+ V'-+-v' + 2 2Ul sin (2Z) - 2 r sin Q cos @
(3• + ax 77y

, 1 _ + A{82v'+ +2' 8+ (A3 aXv')
-Y 6z 3z -

S(9)

p 8z

If the above procedure be carried out for the con-

tinuity equation, the latter becomes

_u+ _v' + wl' = 0 (10)
8x +y 8 z

In making the transformation from spherical to

rectangular coordinates, we must consider the distortion of

the spherical surface as a result of the mapping process.

Specifically, a rectangle in the rectangular system maps into

a region on the sphere in such a manner that the east-west

distance remains constant and the right angles between the

lines x = const. and y = const. map into obtuse angles be-

tween the lines on the sphere corresponding to x = const. and

y = const. Thus, the mapping is not conformal.

With the above transformation we have mapped a

spherical surface onto the plane. Our real aim, however, is

to map the equilibrium surface which establishes itself as a
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result of the interaction of centripetal acceleration and

gravity, onto the plane. We shall, therefore, neglect the

small difference between the true equilibrium surface and

the sphere.

The apparent gravity, g, in (1) acts perpendicular

to the spherical surface. We shall now consider g to act

perpendicular to the equilibrium surface. We must then

drop the term Q2 r sin @ cos @ from the @ equation since, in

reality, this force combines with g acting normal to the

spherical surface, to give rise to a resultant normal to the

equilibrium surface. Finally, g = g' - (1 Q 2 r 2 sin2 Q) isFF 7s

assumed constant. The final result of the approximate trans-

formation is to map the equilibrium free surface of the

ocean onto the x-y plane, with the apparent force of gravity

acting normal to this plane.
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ni__x_2., :e/Sleet of the .

Jonsider the integrated equations of i-aotion of section

I 3.

dl Zq u 61U' dz + v dz -y vdz

J -h -h -h -h

- + Au' qz A , 0 (1)
U-h

dz + U' AV' dz + 9 v' aV'dz + Py u'dz
I-h -h -h -h

"gD +- A AV'h dz +Y (2)

where we have linearized the pressure term in accordance ,lth

remarks to be sade later in sections 3 and 5. Tx9 'y are now

the wind-stress components of section 3 divided by p. Assume

u'= i(x,y,t) ekz , v1 = V(X 5Y't) Ckz

i.e. the velocities decsy oxponontially w:ith depth.

Then,

au kz q + 21z _Ell z 2.z
at e 1-h 1-- ay ek~

sin (2 ) e - - g D 4 )-c A A e+tz L h k
1.h 1-h
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" ekZ i eZlit e 3x. + e O

+ 2Q2 sin(.Y) j cl-z = g ~ + ~ e~ kz+t k (+
_h FY]y

ik " '-_h

i Anproxiý-.ato the exponentials at their limi1ts by

eki 1, ei - h 0. Then (3) and (L) become

61: ax" y 20snE) xQ~ + ½ 1 -÷

atT0a1+:v+2 Oyi2 u- D 44]c+ MV +'k (6)

Linearize the Coriolis rareameter by 20 sin( ). z y

where -T - Taking the derivativc of (6) with respect to

x and the derivative of (5) with respect to y and subtracting,

we have

a VLF. + 1 ®R+ 2v + fya 2- 2-
at ax ay jaxx Uý_ Ox-y -a~ uxy O~

ax ay ax ay

+ k(ax - -(7)

Choose T -0 , = x = - (W' + r' sin wt) cos ny.

We shall non-dimensionalize the velocities so that they

are of order unity in the interior of the ocean. It is con-

venient* to choose

*The choice of the non-dimensional quantities is motivated in

section 4.
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2s2
kW 22S

WH w w -u, W=nW', P =nrs- 3

In this notation and with the prescribed form for Tx and uy

equation (7) becomes

U 1  Fa7 +u-.+x 2
Xi -y' taxi x 12 ax',ly, ax',ay,

au au _ u •,2_U ýV DIU V_V_
aX'ay' x' ay' ay'ay' ay' 2 I

+ Y 0-x + a' vx + V y'~l v "- (1 + a sin ur)sin nsy'

(8)

The integrated, non-dimensionalized continuity equation be-

comes

UU + 5 V _ H(9

If we expand the velocities and the height, H, in a

series in 6, then the solution can be looked upon as the sum

of a quasi-steady part plus a number of out-of-phase contribu-

tions. If b is small enough we may be justified in keeping

only the first two terms of such a series as a fairly accurate

representation of the complete series.

Hence, let

U = Uo + bIT1 + b 2 U2 + ... , V = Vo + bV1 + 6 2 V2 +

H = H0 +6HI +62H2 +
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Then for the equations of zero-order in b, we have*

[aUo aVo a2 U _V Uo, ~ ~ ~ 3 =1¥[- ..- V y• + Vo = eA [V-r - 3 ]
axr V67 ax

ay =I
- (1 + a sin t)sin nsy' (10)

0 + = 0 (=1)
ax' ay'

The first order equations in 6 are:

Vo aUo ,8U V bU1 aVo a2 VI a2 Vo
0)l + r [-4--4-ý-x1 02- + U a2

8t x' Oy x 4x FX + U0  x 2  1a'

8H° ~ : A,' ( aV!

a]-y + V1 =e al)i) (12)
" f ]-6x7 ay'

_ _ + 01 = - - . (13)
ax' ay ' Ot

Munk, Groves, and Carrier [7] have shown that the effect

of the non-linear terms in [101 is quantitative and that these

non-linear terms can be neglected as compared to the Coriolis

term, V0. The relationship of the non-linear terms to the

Coriolis term in equation (12) is essentially the same as that

in equation (10). This fact can be shown by considerations

based on orders of magnitude. We choose a typical non-linear

term in each equation, y ax' ax' in (10) and Y a -ax in

(12), and compare it to the Coriolis terms in that equation,

Vo in (10) and VI in (12).

In the solution it is shown that U0 , Vo, U1 , V1 and all

their derivatives are of order unity in the interior of the

*Equation (10) with a = 0 is the same as that of Munk, Groves,

Carrier [7]
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ocean. Near the boundary x' = O0 it is shown that Uo = 0(l),

Vo = 0(EI-i/3)1 = O(e/3), V = 0(-2/3) and - s

effect of multiplying the magnitude of a term by 0(s-i/3).

Based on these results the terms to be compared are

given in the table below.

Interior Near x' = 0

Vo = 0(1) Vo = 0(E-1/3)

aue eve IUo aVo
Sx x = YOUl) x x'= O( )

V1 = 0(l) V1 -= 0(6-2/3)

Uo Vl auo 2V1 = (E-4/3)
Y67r -- r 0(o ) _ _x' ax0

Thus, in the interior in each case we haveO(l) vs.

T0(l) . Near the boundary x' = 0, in each case we must com-

pare 0(1) vs. Y0(6- 2 / 3 ). Hence, the relationship of the non-

linear terms to the Coriolis terms is essentially the same

in the two sots of equations. It would seem therefore that,

if the non-linear terms can be neglected in the steady equation

(10), they can also be neglected in the first-order, non-steady

equation (12).
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Appendixi.. Hydrostatic Pressure Assumption.

The results in the main body of the report are based on

the assumption that the vertical equation of motion can be

approximated by the hydrostatic pressure equation. Although

this approximation is probably sufficiently accurate for the

problem under consideration, it may warrant a few further

remarks.

Consider the steady, linearized problem. The equations

of motion with a linearized Coriolis term are

-yv' _ + AA u' (A3 - ) (1)

p ax Paz3az

nyu' = - I. +MAAv' + 1 -(A 3 a ) (2)

and the continuity equation is

a ) + L v I 0 (3)
ax Wy -az

Equations (1) and (2) can be multiplied by the density

to yield

-yv'p = - + AA (pu t ) + -(A 3  z )
ax

Pyu'p =- + AA (pv') + Iz(A 3 (v')ay a

where we have written AA(pu') for AptVI and AA (pv') for

ApAv'. This approximation is certainly permissible since

these terms represent, in the first instance, only very rough

approximations to the true state of affairs in turbulent motion.
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If we integrate (l)-(3) from a depth z - h(x,y,t)

where the motion is assumed negligible to the free surface

z =q (x,y,t), then

V -hh -hi

+ U=- dz + AAV + A3  ' L
Sw h -h

7 + 0 (6)

where the non-linear terms resulting from the interchange of

derivatives and integrals in the viscous terms have been

neglected.

The terms A3 au "r and AL z 1h 3a 1-h U

provide the wind-stress components at the free surface (see

sec. 3 of report). The depth z = -h has been chosen as that

depth where the velocities are negligible so that the contribu-

tions of the above terms at the lower limit are negligible.

When the -Y term in the continuity equation is integrated,az

it provides a contribution involving a time-derivative, viz.,

at so that it vanishes in the present problem.

The pressure terms are

I -L dz _ p dz_ aL9 pH _ .p_.h
ax ax ax a -

-h -h
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where p is p evaluated at z = q , and P-h is p evaluated at

z = -h.

If the free surface be considered a surface of zero

pressure, then p0 = 0.

Defining

P = hp dz
J -h

we have for equation (4) and (5)

-PyV 2E + hx P-h 4 AEU (7)

-+2 p + AAV + y- (8)

A stream function * can be defined by U = - -y 7 V +

so that (6) is satisfied identically. Taking the derivative of

(7) with respect to y and (8) with respect to x and subtracting,

we obtain

AAA 3 x h aP-h Oh aP-h + x_ (9)
-x 8y 8y ax Cy

Since z = -h is the depth where the velocities are

negligible, the third equation of motion below this depth re-

duces to the hydrostatic pressure equation, -2 = gp ) if pS 8az

is constant along z = -h(x,y,t). Then C- Oh 7P-h

= Wh . With these results substituted into (9), we have

AAA* = -y -x (10)
Oy x
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If boundary conditions are imposed and if T and T
y

are specified, the problem defined by (10) can be solved (see

Appendix 5). Thus for the analysis of the steady state prob-

lem, the only necessary assumption concerning the pressure and

the density is that the density be constant along the surface

below which the velocities are negligible.

If the height z = -h is approximated by a constant,

then the derivatives of the pressure terms in (9) vanish and

no assumption need be made concerning the density along the

surface z -h.
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Appendix_4(a). Derivation of Relationship Between T an.

1' With the density distribution given by

PPo q > z >T

p Pojl + c(T-z)] T_> z_> T - d

P P -h :P o [1 + cd] T - d > z

we can find a relationship between T and n by considering the

conditions

i p 0 p 10.

5 z=-h z=-h

The hydrostatic pressure equation is

p g gq pdý
Z

j~ (' dC + 2L- ~P =
p ~X z-h h _ •x 0

But

a-o: o > z>T
ax

:PoC• - T _ -

=0 T-d> z

Hence,
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or

cd 0 + 0
a3x a3x

aT 1 P = Po
ax cd ax E-K ax

where Ap =P-h Po

Similarly,

T Po a(2)

Integrating (1) and (2), we have finally

T = Po C
Fp

where T = - C when q 0.

Appendix 4(b). Derivation of Integrated Pressure Terms..

In order to compute the terms dz 22 dz-
In -h p8x 'i-hp 3y

we must divide the region of integration into three separate

parts, viz.,

-h -h T 3 d $T

Sdz = [ S [ d ] dz + g 1  [ .2P ad ] dz.dax -h ( T a) d

+ g -- [n 60 dC I dz + gpo 0_•dz(I
ýT z ax ax _hP
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Using the values of -L for the three layers listed in Appendix
ax

4(a), we have

n S 22 dC = p cd MTT z < T-dz 8x 0o ax

=PCT (T-z) T-d < z < T

=0 T<z

T hen

g hT-d j Ox 1]=gcd xT [T-d + h]-h P z a +da

g T 1 -- [ dC ]dz = gd a-T + g CI .1 log 1c~

T-d p x 3x x c cd+1

g z .2a dC ]dz= 0
gdT 1P a x

- q T - [T -d-h] g zlog(

ax-h P dz g x 1:d ax c

+ g .f (r-T).
ax

Let us put these values into (1) and at the same time

use

aT P-O = an- 1 and T P-eq- Ca-x Fp 7•ox 7d x F

"~~~ !_ I0 z =-g 2n• [T-dhlN + g . I [T-d+h]

" h P Ox 6x I+cd Ox 1+c--d

_ g Po 1 log(-L) - g .12 log(_.L)
c ox Ep j ox cd-i cax cdx
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ax ip ax

- - _ -h+ g L + g C P-hz F IogP--- (2)c ax EF ax ax "Ap c ax P -h()

But

logP° - -log P-h _ log (- log (AR +I)
P 0p 0  p 0

Since the torm AR is small we can write
P0

(4~2log(l -AP) z ýk 1A

Hence (2) becomes

P T i1 -P- dz g (C + .P h + d) .---lJ-h P Ox ax

Similarly,

S- dz =g (C + P-h + d)yp

-h P ay

g (D + P-h

ap a
dwhere D C +
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Appendix 5. An Example of Bounda Layer Technic.uc

In this section we shall discuss the application of

the boundary layer technique to the solution of the problem

defined by the equation

6AA6 - = (1+a sinr) sin nsy (1)

and the boundary conditions

S= 0 on x = O,r (2)

= yy =O on y =O,.

The nature of the boundary layer problem is characterized

by three features: (1) the problem is non-dimensionalizod so

that the size of the domain has lengths of order unity; (2)

the coefficient of the most highly differentiated term is

small compared to unity; (3) the remaining terms have coeffi-

cients of order unity. The problem to be considered here has

already been put into a suitable non-dimensional form.

If * were everywhere a smooth** function of its arguments

and of order unity, then it should be possible to determine a

good approximation to the solution by neglecting the term with

coefficient _(F <<l) and by considering the remaining equation

*For an interesting account of boundary layer technique, in-

cluding the treatment of non-linear problems, the reader is
referred to [8)

* By"smooth" we mean that * has no lar-e derivatives, i.e.,
1, *x, *xxxx, etc. are all of the same order of magnitude.
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x - (l+a sin r.) sin nsy (3)

Thus, a possible solution is

(l+a sin ) sin nsy [- x + CII(yt) ]. (()

We are now faced with a dilemna, however. • as given

in (+) provides one arbitrary function of y and ' to satisfy

the four conditions on the boundaries x = 0, x = r. If our

assumption that * is everywhere a smooth function is correct,

then we are at a loss to find a complete answer to the problem.

For if * and its derivatives have the same order of magnitude

everywhere, the only possible solution is of the form

*i + O(6) and it is not possible to satisfy all boundary con-

ditions.

It is obvious, therefore, that * cannot be smooth

everywhere. In particular, in order for the full solution

to be different from i + 0(s), at least one of the terms,
xxxx, xxyy or *yyyy must be of order e-l in some part of

the domain under consideration so that the approximation of

neglecting terms of order E will not reduce the order of the

differential equation. If * is smooth away from the boundaries

and if derivatives with respect to x are large, so that

*xxxx is of order e-1, near x = O,r, then the problem is one

of the boundary layer type. We shall proceed formally on the

assumption that this is true, realizing that if it is not the

case, we shall be led to a contradiction.
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The solution may now be written as the sum of two parts-

*i given by (4)(the "interior solution"), *b being sensibly

large only near the boundary and negligibly small in the in-

terior, (the "boundary layer contribution"). We must now try

to determine the boundary layer contribution.

The nature of the total solution itself is the guiding

factor in the investigation. We have supposed that near the

boundaries x = O,r, Mbhas large derivatives with respect to x

while *Pi is everywhere smooth and of' order unity. Thus, if' we

write our solution in two Darts, i.e., ¶i + 'b' the differential

equation can be written in the form

EAA~i + 6AA 1 b - *ix - ýbx = (l+a sin ¶)sin nsy.

Now the term cAA'i is of order s, the terms underlined twice

are of order unity and the order of' magnitude of the terms

underlined once is as yet undetermined. Since the terms in

*b are to have derivatives with respect to x which are (assumed)

large, we have *bx >> 1. Hence at least one of the terms of

must be as large as *bx in order to balance this term.

The equation will then be satisfied approximately if we write

"(l+a sinu) sin nsy

and

-AA*b " *bx = 0()

We must now integrate these equations and then add the two

solutions *i and*b to form the complete solution .
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The solution to the first of the two equations is given

by (k). Since the complete solution will only be approximate,

in that terms of order s have already been neglected, *b need

only be determined approximately.

It is suggested by the above considerations that we

find a formal method for writing our equation so that the

magnitudes of the terms are expressed by the coefficients and

that the derivatives, etc., be of order unity. We can do this

by stretching the x coordinate near the boundary i.e., by de-

fining a now x coordinate so that a particular distance in x

becomes a much larger distance in the new coordinate.

Formally, we operate as follows. Let x be replaced by

the coordinate ý such that

x = ný

where n is to be determined. Then the equation (5) becomes

-14n4-1. b + 2 e-2n+l .bL yy + ,byyyy _,-n *bý =O

In choosing n we note that it must be positive if the

x coordinate is to be stretched. Thus of the terms which

originally had coefficient e, -4n+l bb ý is the largest

since it has the largest coefficient (n.b. *b•' *b•C

"*b(ýyy, tbyyyy are the same order of magnitude). This term

is matched with e-n *b' the remaining large term in the

differential equation, and by equating the coefficients of the

above two terms, we have n = 1/3.
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Thus we get

C-1/3 +i -el/3
s-/ + 2e 3 •býyy + 6 *byyyy *b= 0

or

0(2/3).-b• - 2/3

Now if *b be expanded into an asymptotic series and if

we keep only the first term in the series (for all practical

purposes, this amounts to neglecting the 0(62/3) terms), we

have

-1 = 0 (6)

The solution to (6) is
2't

" Cb =C 1 2 (y'r) + C2 2 (y r)ee + C 3 2(Y,'U)ee 3

+ c 42 (y,,•)ee 3 -

We have specified that this solution is to become

negligibly small as the distance from the boundary increases.

Thus letting ý--•co, we note that it is necessary that C1 2 =

C2 2 = 0 since neither C1 2 nor k tends to zero. Hence, for

the region near x = 0, we have
2Tci 4ni

,b = C32(y)e T + C3 2 (y,)ee-

1/3
or, changing our coordinates back to x by means of x =
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Fb C3(')X-1/3 e -3 +Cx -1/3 e -.I3
= 3(y,)ex3

For the boundary near x = r, we now define ý by

(x-r) = n,

and specify that the solution vanish as 4-co, i.e., as the

distance into the interior part of the ocean increases. By

a similar analysis, we find that near x = r,

*b = C1 3 (y,¶) + C2 3 (Y7')eý + C 33(Y,)e~e 23i

e4,xi
+ C4 3 (y,-)eu e -3

In order for ýb to tend to zero as - o, it is

necessary that C13 = C33 = 43 = 0. Hence

* = C23(Y7 -0)el 2 (y, •)e(X-r) E-l/3
= C3(,¶e~ =C2

The total boundary layer solution can be written
(x-r) E-1/ x -1/3 2 ni

27ti

= C2 ytexi+ C3 (yrex

X C 1/3 e -3(7
C4 (y,-c)e (7)

The solution throughout the domain consists of (4) and

(7) or

! 'F= ' 1i + 'b = (l- a sinv )sin nsy - x + CI(y, t) ]

C(x-r)-1/3 -1/3 e 2n
SC2 (y'e r + C3 (y,t)eX 3

-i/3e (8)3e+ C)+(Y,')ex 3(8
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An application of the boundary conditions, 'P= 'x = 0x
on x = O,r, yields

= (1+ a sin r) sin nsy{ -x+r-e1/ 3  + 1/3 e
1 2

+ [(el/3-r)cos (• 4 •2i)÷ (• eI/3 - __L)sin (X\-el/3]

e-

The term 1 is valid throughout the ocean. Near x = O, 3 be-

comes as important as 1 and gets negligibly small as x in-

creases. Near x = r, 2 and 1 together form the solution but

2 tends to zero as x decreases,

Perhaps a few remarks should be made as to the specific

choice of sin nsy for the total y dependence of the solution.

The particular choice of sin nsy satisfies the boundary con-

ditions ' = *yy = 0 on y = O, y = 1, and is supported by the

specified wind distribution. Thus'we were not forced to resort

to a boundary layer analysis to satisfy the four boundary

conditions. Of course, such a simple choice is not always

possible, and one might have to resort to methods for refining

the interior solution in other problems in order to satisfy

the necessary boundary conditions.
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